An analysis of the surface generation mechanics of the elliptical vibration texturing process

Ping Guo*, Kornel F. Ehmann

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

131 Scopus citations

Abstract

The elliptical vibration texturing process is a vibration assisted machining method for the fast generation of micro structured surfaces. It adds a higher order motion component to the cutting tool that leads to periodic changes in the cutting depth during the machining process. This results in the creation of micro-dimples on the machined surface, whose shape is a function of the tool geometry and trajectory. This paper studies the surface generation mechanics of the elliptical vibration texturing process through experimentation and modeling. A surface generation algorithm is presented for this newly developed process. The model fully describes the motion and the 3D geometry of the cutting tool including its rake face, flank face, and the cutting edge, since all these tool features influence the topography of the generated surface. Since the process takes place in the micro/meso-scale cutting regime, the model includes the minimum chip thickness and elastic recovery effects. The experimental results are shown to validate the simulation model. The simulation model is used to characterize the influences of the process parameters on the texture patterns. The effects of the tool geometry on the process, including the cutting edge radius, are also analyzed.

Original languageEnglish (US)
Pages (from-to)85-95
Number of pages11
JournalInternational Journal of Machine Tools and Manufacture
Volume64
DOIs
StatePublished - Jan 2013

Keywords

  • Elliptical vibration texturing
  • Machine tool kinematics
  • Micro cutting
  • Structured surfaces
  • Surface generation
  • Tertiary motion generator

ASJC Scopus subject areas

  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'An analysis of the surface generation mechanics of the elliptical vibration texturing process'. Together they form a unique fingerprint.

Cite this