An Approach for Detecting Student Perceptions of the Programming Experience from Interaction Log Data

Jamie Gorson*, Nicholas LaGrassa, Cindy Hsinyu Hu, Elise Lee, Ava Marie Robinson, Eleanor O’Rourke

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Student perceptions of programming can impact their experiences in introductory computer science (CS) courses. For example, some students negatively assess their own ability in response to moments that are natural parts of expert practice, such as using online resources or getting syntax errors. Systems that automatically detect these moments from interaction log data could help us study these moments and intervene when the occur. However, while researchers have analyzed programming log data, few systems detect pre-defined moments, particularly those based on student perceptions. We contribute a new approach and system for detecting programming moments that students perceive as important from interaction log data. We conducted retrospective interviews with 41 CS students in which they identified moments that can prompt negative self-assessments. Then we created a qualitative codebook of the behavioral patterns indicative of each moment, and used this knowledge to build an expert system. We evaluated our system with log data collected from an additional 33 CS students. Our results are promising, with F1 scores ranging from 66% to 98%. We believe that this approach can be applied in many domains to understand and detect student perceptions of learning experiences.

Original languageEnglish (US)
Title of host publicationArtificial Intelligence in Education - 22nd International Conference, AIED 2021, Proceedings
EditorsIdo Roll, Danielle McNamara, Sergey Sosnovsky, Rose Luckin, Vania Dimitrova
PublisherSpringer Science and Business Media Deutschland GmbH
Pages150-164
Number of pages15
ISBN (Print)9783030782917
DOIs
StatePublished - 2021
Event22nd International Conference on Artificial Intelligence in Education, AIED 2021 - Virtual, Online
Duration: Jun 14 2021Jun 18 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12748 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Artificial Intelligence in Education, AIED 2021
CityVirtual, Online
Period6/14/216/18/21

Keywords

  • CS education
  • Detection systems
  • Self-assessment

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'An Approach for Detecting Student Perceptions of the Programming Experience from Interaction Log Data'. Together they form a unique fingerprint.

Cite this