An atom-probe tomography primer

David N. Seidman, Krystyna Stiller, Praneet Adusumilli*, Didier Blavette, Alfred Cerezo, Philip L. Flaitz, Kazuhiro Hono, Jean Juraszek, Thomas F. Kelly, David J. Larson, Lincoln J. Lauhon, Dan Lawrence, Emmanuelle A. Marquis, Michael K. Miller, Osamu Nishikawa, J. A. Panitz, Ty J. Prosa, Simon P. Ringer, Paul A. Ronsheim, Guido SchmitzGeorge D.W. Smith, Chantal K. Sudbrack

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

106 Scopus citations


Atom-probe tomography (APT) is in the midst of a dynamic renaissance as a result of the development of well-engineered commercial instruments that are both robust and ergonomie and capable of collecting large data sets, hundreds of millions of atoms, in short time periods compared to their predecessor instruments. An APT setup involves a field-ion microscope coupled directly to a special time-of-flight (TOF) mass spectrometer that permits one to determine the mass-to-charge states of individual field-evaporated ions plus their x-, y-, and z-coordinates in a specimen in direct space with subnanoscale resolution. The three-dimensional (3D) data sets acquired are analyzed using increasingly sophisticated software programs that utilize high-end workstations, which permit one to handle continuously increasing large data sets. APT has the unique ability to dissect a lattice, with subnanometer-scale spatial resolution, using either voltage or laser pulses, on an atom-by-atom and atomic planeby-plane basis and to reconstruct it in 3D with the chemical identity of each detected atom identified by TOF mass spectrometry. Employing pice- or femtosecond laser pulses using visible (green or blue light) to ultraviolet light makes the analysis of metallic, semiconducting, ceramic, and organic materials practical to different degrees of success. The utilization of dual-beam focused ion-beam microscopy for the preparation of microtip specimens from multilayer and surface films, semiconductor devices, and for producing site-specific specimens greatly extends the capabilities of APT to a wider range of scientific and engineering problems than could previously be studied for a wide range of materials: metals, semiconductors, ceramics, biominerals, and organic materials.

Original languageEnglish (US)
Pages (from-to)717-724
Number of pages8
JournalMRS Bulletin
Issue number10
StatePublished - Oct 1 2009

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry


Dive into the research topics of 'An atom-probe tomography primer'. Together they form a unique fingerprint.

Cite this