### Abstract

We study the capacitated vertex cover problem, a generalization of the well-known vertex-cover problem. Given a graph G=(V,E), the goal is to cover all the edges by picking a minimum cover using the vertices. When we pick a vertex, we can cover up to a pre-specified number of edges incident on this vertex (its capacity). The problem is clearly NP-hard as it generalizes the well-known vertex-cover problem. Previously, approximation algorithms with an approximation factor of 2 were developed with the assumption that an arbitrary number of copies of a vertex may be chosen in the cover. If we are allowed to pick at most a fixed number of copies of each vertex, the approximation algorithm becomes much more complex. Chuzhoy and Naor (FOCS, 2002) have shown that the weighted version of this problem is at least as hard as set cover; in addition, they developed a 3-approximation algorithm for the unweighted version. We give a 2-approximation algorithm for the unweighted version, improving the Chuzhoy-Naor bound of three and matching (up to lower-order terms) the best approximation ratio known for the vertex-cover problem.

Original language | English (US) |
---|---|

Pages (from-to) | 16-33 |

Number of pages | 18 |

Journal | Journal of Computer and System Sciences |

Volume | 72 |

Issue number | 1 |

DOIs | |

State | Published - Feb 1 2006 |

### Keywords

- Approximation algorithms
- Capacitated covering
- Linear programming
- Randomized rounding
- Set cover
- Vertex cover

### ASJC Scopus subject areas

- Theoretical Computer Science
- Computer Networks and Communications
- Computational Theory and Mathematics
- Applied Mathematics

## Fingerprint Dive into the research topics of 'An improved approximation algorithm for vertex cover with hard capacities'. Together they form a unique fingerprint.

## Cite this

*Journal of Computer and System Sciences*,

*72*(1), 16-33. https://doi.org/10.1016/j.jcss.2005.06.004