Abstract
Comparative relativistic effective core potential ab initio calculations for both Th(IV) and U(IV) Cp3AnL (Cp = η5-C5H5; L = CH3, BH4) complexes are reported. The Cp-An bonding appears to be dominated by metal 6d orbitals interacting with ligand π2 orbitals. Metal 5f orbitals provide a smaller contribution but are crucial for stabilization of the Cp3An cluster. The stability of the An-CH3 bonding depends upon interactions involving metal 6dz2-based orbitals directed along the An-CH3 vector. The L = BH4 ligand interactions are mediated by dxz and dyz atomic orbitals, which are even better suited for favorable overlap and, hence, for greater metal-ligand π covalency. Ground 3A2 states have been found to be the most stable for the U(IV) complexes. The experimental He I/He II photoelectron data are consistent with the quantum chemical calculations and indicate a close similarity between ground-state properties of the present Th(IV) and U(IV) complexes.
Original language | English (US) |
---|---|
Pages (from-to) | 11673-11676 |
Number of pages | 4 |
Journal | Journal of physical chemistry |
Volume | 97 |
Issue number | 45 |
DOIs | |
State | Published - Jan 1 1993 |
ASJC Scopus subject areas
- General Engineering
- Physical and Theoretical Chemistry