TY - JOUR
T1 - An organelle-specific protein landscape identifies novel diseases and molecular mechanisms
AU - UK10K Rare Diseases Group
AU - Boldt, Karsten
AU - Van Reeuwijk, Jeroen
AU - Lu, Qianhao
AU - Koutroumpas, Konstantinos
AU - Nguyen, Thanh Minh T.
AU - Texier, Yves
AU - Van Beersum, Sylvia E.C.
AU - Horn, Nicola
AU - Willer, Jason R.
AU - Mans, Dorus A.
AU - Dougherty, Gerard
AU - Lamers, Ideke J.C.
AU - Coene, Karlien L.M.
AU - Arts, Heleen H.
AU - Betts, Matthew J.
AU - Beyer, Tina
AU - Bolat, Emine
AU - Gloeckner, Christian Johannes
AU - Haidari, Khatera
AU - Hetterschijt, Lisette
AU - Iaconis, Daniela
AU - Jenkins, Dagan
AU - Klose, Franziska
AU - Knapp, Barbara
AU - Latour, Brooke
AU - Letteboer, Stef J.F.
AU - Marcelis, Carlo L.
AU - Mitic, Dragana
AU - Morleo, Manuela
AU - Oud, Machteld M.
AU - Riemersma, Moniek
AU - Rix, Susan
AU - Terhal, Paulien A.
AU - Toedt, Grischa
AU - Van Dam, Teunis J.P.
AU - De Vrieze, Erik
AU - Wissinger, Yasmin
AU - Wu, Ka Man
AU - Al-Turki, Saeed
AU - Anderson, Carl
AU - Antony, Dinu
AU - Barroso, Inês
AU - Bentham, Jamie
AU - Bhattacharya, Shoumo
AU - Carss, Keren
AU - Chatterjee, Krishna
AU - Cirak, Sebahattin
AU - Cosgrove, Catherine
AU - Katsanis, Elias Nicholas
AU - Davis, Erica Ellen
N1 - Funding Information:
We thank the patient and parents for participation in research. We thank Gisela Slaats for technical assistance, the Syscilia consortium members for helpful scientific discussions, Colin Johnson for access to the siRNA datasets, and the Cell Microscopy Center Utrecht for Imaging assistance. The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7/2009 under grant agreement no: 241955, SYSCILIA (to G.A., P.L.B, O.E.B., T.J.G., M.A.H., N.K., H.K., H.O., U.W., F.K., B.F., R.H.G., M.U., R.B.R. and R.R.), FP7 grant agreement no. 278568, PRIMES (to M.U and K.B.); the Dutch Kidney Foundation 'Kouncil' (CP11.18 to H.H.A., P.L.B., R.H.G. and R.R.); the Netherlands Organisation for Scientific Research (Veni- 016.136.091 to E.v.W., Veni-91613008 to H.H.A., and Vici-865.12.005 to R.R.); the Foundation Fighting Blindness (grant C-CMM-0811-0546-RAD02 to R.R., and grant C-CMM-0811-0547-RAD03 to H.K. and E.v.W.); NIH grants DK075972 and HD042601 (N.K.); DK072301 (N.K. and E.E.D); and EY021872 (E.E.D). H.K. and E.v.W. acknowledge 'Stichting Nederlands Oogheelkundig Onderzoek', 'Stichting Blindenhulp', 'Stichting Researchfonds Nijmegen', 'Landelijke Stichting voor Blinden en Slechtzienden', and the Netherlands Organisation for Health Research and Development (ZonMW E-rare grant 40-42900-98-1006). M.B., Q.L. and R.B.R. are supported by the Excellence Initiative Cell Networks, Germany Science Ministry. N.K. is a distinguished Jean and George Brumley Professor. B.F. acknowledges support from the Telethon Foundation (TGM11CB3). M.U. was supported by the Tistou & Charlotte Kerstan Stiftung.
Publisher Copyright:
© 2016, Nature Publishing Group. All rights reserved.
PY - 2016/5/13
Y1 - 2016/5/13
N2 - Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine.
AB - Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine.
UR - http://www.scopus.com/inward/record.url?scp=84968718737&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84968718737&partnerID=8YFLogxK
U2 - 10.1038/ncomms11491
DO - 10.1038/ncomms11491
M3 - Article
C2 - 27173435
AN - SCOPUS:84968718737
SN - 2041-1723
VL - 7
JO - Nature Communications
JF - Nature Communications
M1 - 11491
ER -