TY - JOUR
T1 - An Ultraviolet Excess in the Superluminous Supernova Gaia16apd Reveals a Powerful Central Engine
AU - Nicholl, M.
AU - Berger, E.
AU - Margutti, R.
AU - Blanchard, P. K.
AU - Milisavljevic, D.
AU - Challis, P.
AU - Metzger, B. D.
AU - Chornock, R.
N1 - Publisher Copyright:
© 2017. The American Astronomical Society. All rights reserved.
PY - 2017/1/20
Y1 - 2017/1/20
N2 - Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below ∼3000 Å. Yan et al. have recently presented HST UV spectra and attributed the UV flux to low iron-group abundance in the outer ejecta, and hence reduced line blanketing. Here, we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by ∼10-15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting M ej = 4.8(0.2/κ) M o, where κ is the opacity in cm2 g-1, and forming a magnetar with spin period P = 2 ms, and B = 2 x 1014 G (lower than other SLSNe with comparable rise times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z = 0.18 Z o, is comparable to other SLSNe.
AB - Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below ∼3000 Å. Yan et al. have recently presented HST UV spectra and attributed the UV flux to low iron-group abundance in the outer ejecta, and hence reduced line blanketing. Here, we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by ∼10-15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting M ej = 4.8(0.2/κ) M o, where κ is the opacity in cm2 g-1, and forming a magnetar with spin period P = 2 ms, and B = 2 x 1014 G (lower than other SLSNe with comparable rise times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z = 0.18 Z o, is comparable to other SLSNe.
KW - supernovae: general
KW - supernovae: individual (Gaia16apd)
UR - http://www.scopus.com/inward/record.url?scp=85011282371&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85011282371&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/aa56c5
DO - 10.3847/2041-8213/aa56c5
M3 - Article
AN - SCOPUS:85011282371
SN - 2041-8205
VL - 835
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 1
M1 - L8
ER -