Abstract
Neutron diffraction spectra were obtained during various stages of a reversible stress-induced austenite to martensite phase transformation in superelastic NiTi. This was accomplished by neutron diffraction measurements on bulk polycrystalline NiTi samples simultaneously subjected to mechanical loading. Analysis of the data was carried out using individual lattice plane (hkl) reflections as well as by Rietveld refinement. In the Rietveld procedure, strains in austenite were described in terms of an isotropic (hkl independent) and an anisotropic (hkl dependent) component. At higher stresses, austenite lattice plane reflections exhibited nonlinear and dissimilar elastic responses which may be attributed to the transformation. The texture evolution is significant in both austenite and martensite phases during the transformation and two approaches were used to describe this evolving texture, i.e., an ellipsoidal model due to March-Dollase and a generalized spherical-harmonic approach. The respective predictions of the phase fraction evolution as a function of applied stress were compared. A methodology is thus established to quantify the discrete phase strains, phase volume fractions, and texture during such transformations.
Original language | English (US) |
---|---|
Pages (from-to) | 3020-3029 |
Number of pages | 10 |
Journal | Journal of Applied Physics |
Volume | 86 |
Issue number | 6 |
DOIs | |
State | Published - Sep 1999 |
ASJC Scopus subject areas
- General Physics and Astronomy