Analytical solution for describing the thermo-mechanical behavior of plane energy geostructures

Alessandro F. Rotta Loria*, Jacopo Zannin, Qazim Llabjani, Lyesse Laloui

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Over the past twenty years, a substantial amount of research has been performed to expand the modeling capabilities of energy geostructures: innovative earth-contact structures that provide combined structural support and renewable energy supply. Several analytical and semi-analytical solutions have been made available for describing the thermo-mechanical behavior of cylindrical energy geostructures such as energy piles. However, no analytical solutions for capturing the thermo-mechanical behavior of plane energy geostructures such as energy walls and slabs have been developed until recently. This paper summarizes the essential features of the first analytical solution available for describing the thermo-mechanical behavior of plane energy geostructures. This analytical solution extends Winkler's model for a beam resting on an elastic soil mass to non-isothermal conditions, allowing to quantify the effects of temperature variations, axial loads, transversal loads and bending moments applied to plane energy geostructures. Such an analytical solution can be used in the analysis of an elementary unit represented by a single beam as well as complex plane energy geostructures using the superposition principle. Based on the preceding capabilities, the proposed analytical solution may effectively serve the analysis or design of plane energy geostructures under the influence of mechanical and/or thermal loads.

Original languageEnglish (US)
Article number06009
JournalE3S Web of Conferences
Volume205
DOIs
StatePublished - Nov 18 2020
Event2nd International Conference on Energy Geotechnics, ICEGT 2020 - La Jolla, United States
Duration: Sep 20 2020Sep 23 2020

ASJC Scopus subject areas

  • Environmental Science(all)
  • Energy(all)
  • Earth and Planetary Sciences(all)

Fingerprint

Dive into the research topics of 'Analytical solution for describing the thermo-mechanical behavior of plane energy geostructures'. Together they form a unique fingerprint.

Cite this