TY - JOUR
T1 - Analyzing myocardial torsion based on tissue phase mapping cardiovascular magnetic resonance
AU - Chitiboi, Teodora
AU - Schnell, Susanne
AU - Collins, Jeremy
AU - Carr, James
AU - Chowdhary, Varun
AU - Honarmand, Amir Reza
AU - Hennemuth, Anja
AU - Linsen, Lars
AU - Hahn, Horst K.
AU - Markl, Michael
N1 - Funding Information:
MM had support by the National Heart, Lung, And Blood Institute (NHLBI) of the National Institutes of Health, grant 1R01 HL117888. TC had support from the Deutscher Akademischer Austausch Dienst (German Academic Exchange Service), Kurzstipendien f?r Doktorandinnen und Doktoranden Studienjahr 2014/15 (Short stipend for doctoral studies year 2014/15) number 57044987.
Publisher Copyright:
© 2016 Chitiboi et al.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2016/4/10
Y1 - 2016/4/10
N2 - Background: The purpose of this work is to analyze differences in left ventricular torsion between volunteers and patients with non-ischemic cardiomyopathy based on tissue phase mapping (TPM) cardiovascular magnetic resonance (CMR). Methods: TPM was performed on 27 patients with non-ischemic cardiomyopathy and 14 normal volunteers. Patients underwent a standard CMR including late gadolinium enhancement (LGE) for the assessment of myocardial scar and ECG-gated cine CMR for global cardiac function. TPM was acquired in short-axis orientation at base, mid, and apex for all subjects. After evaluation by experienced observers, the patients were divided in subgroups according to the presence or absence of LGE (LGE+/LGE-), local wall motion abnormalities (WM+/WM-), and having a preserved (≥50 %) or reduced (<50 %) ejection fraction (EF+/EF-). TPM data was semi-automatically segmented and global LV torsion was computed for each cardiac time frame for endocardial and epicardial layers, and for the entire myocardium. Results: Maximum myocardial torsion was significantly lower for patients with reduced EF compared to controls (0.21 ± 0.15°/mm vs. 0.36 ± 0.11°/mm, p = 0.018), but also for patients with wall motion abnormalities (0.21 ± 0.13°/mm vs. 0.36 ± 0.11°/mm, p = 0.004). Global myocardial torsion showed a positive correlation (r = 0.54, p < 0.001) with EF. Moreover, endocardial torsion was significantly higher than epicardial torsion for EF+ subjects (0.56 ± 0.33°/mm vs. 0.34 ± 0.18°/mm, p = 0.039) and for volunteers (0.46 ± 0.16°/mm vs. 0.30 ± 0.09°/mm, p = 0.004). The difference in maximum torsion between endo- and epicardial layers was positively correlated with EF (r = 0.47, p = 0.002) and age (r = 0.37, p = 0.016) for all subjects. Conclusions: TPM can be used to detect significant differences in LV torsion in patients with reduced EF and in the presence of local wall motion abnormalities. We were able to quantify torsion differences between the endocardium and epicardium, which vary between patient subgroups and are correlated to age and EF.
AB - Background: The purpose of this work is to analyze differences in left ventricular torsion between volunteers and patients with non-ischemic cardiomyopathy based on tissue phase mapping (TPM) cardiovascular magnetic resonance (CMR). Methods: TPM was performed on 27 patients with non-ischemic cardiomyopathy and 14 normal volunteers. Patients underwent a standard CMR including late gadolinium enhancement (LGE) for the assessment of myocardial scar and ECG-gated cine CMR for global cardiac function. TPM was acquired in short-axis orientation at base, mid, and apex for all subjects. After evaluation by experienced observers, the patients were divided in subgroups according to the presence or absence of LGE (LGE+/LGE-), local wall motion abnormalities (WM+/WM-), and having a preserved (≥50 %) or reduced (<50 %) ejection fraction (EF+/EF-). TPM data was semi-automatically segmented and global LV torsion was computed for each cardiac time frame for endocardial and epicardial layers, and for the entire myocardium. Results: Maximum myocardial torsion was significantly lower for patients with reduced EF compared to controls (0.21 ± 0.15°/mm vs. 0.36 ± 0.11°/mm, p = 0.018), but also for patients with wall motion abnormalities (0.21 ± 0.13°/mm vs. 0.36 ± 0.11°/mm, p = 0.004). Global myocardial torsion showed a positive correlation (r = 0.54, p < 0.001) with EF. Moreover, endocardial torsion was significantly higher than epicardial torsion for EF+ subjects (0.56 ± 0.33°/mm vs. 0.34 ± 0.18°/mm, p = 0.039) and for volunteers (0.46 ± 0.16°/mm vs. 0.30 ± 0.09°/mm, p = 0.004). The difference in maximum torsion between endo- and epicardial layers was positively correlated with EF (r = 0.47, p = 0.002) and age (r = 0.37, p = 0.016) for all subjects. Conclusions: TPM can be used to detect significant differences in LV torsion in patients with reduced EF and in the presence of local wall motion abnormalities. We were able to quantify torsion differences between the endocardium and epicardium, which vary between patient subgroups and are correlated to age and EF.
KW - Cardiovascular magnetic resonanace
KW - Myocardial velocities
KW - Non-ischemic cardiomyopathy
KW - Tissue phase mapping
KW - Torsion
UR - http://www.scopus.com/inward/record.url?scp=84966277471&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84966277471&partnerID=8YFLogxK
U2 - 10.1186/s12968-016-0234-5
DO - 10.1186/s12968-016-0234-5
M3 - Article
C2 - 27062364
AN - SCOPUS:84966277471
VL - 18
JO - Journal of Cardiovascular Magnetic Resonance
JF - Journal of Cardiovascular Magnetic Resonance
SN - 1097-6647
IS - 1
M1 - 234
ER -