Analyzing the heterogeneity and complexity of Electronic Health Record oriented phenotyping algorithms.

Mike Conway*, Richard L. Berg, David Carrell, Joshua C. Denny, Abel N. Kho, Iftikhar J. Kullo, James G. Linneman, Jennifer A. Pacheco, Peggy Peissig, Luke Rasmussen, Noah Weston, Christopher G. Chute, Jyotishman Pathak

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

71 Scopus citations


The need for formal representations of eligibility criteria for clinical trials - and for phenotyping more generally - has been recognized for some time. Indeed, the availability of a formal computable representation that adequately reflects the types of data and logic evidenced in trial designs is a prerequisite for the automatic identification of study-eligible patients from Electronic Health Records. As part of the wider process of representation development, this paper reports on an analysis of fourteen Electronic Health Record oriented phenotyping algorithms (developed as part of the eMERGE project) in terms of their constituent data elements, types of logic used and temporal characteristics. We discovered that the majority of eMERGE algorithms analyzed include complex, nested boolean logic and negation, with several dependent on cardinality constraints and complex temporal logic. Insights gained from the study will be used to augment the CDISC Protocol Representation Model.

Original languageEnglish (US)
Pages (from-to)274-283
Number of pages10
JournalAMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium
StatePublished - 2011

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'Analyzing the heterogeneity and complexity of Electronic Health Record oriented phenotyping algorithms.'. Together they form a unique fingerprint.

Cite this