Ancestral polyploidy in seed plants and angiosperms

Yuannian Jiao, Norman J. Wickett, Saravanaraj Ayyampalayam, André S. Chanderbali, Lena Landherr, Paula E. Ralph, Lynn P. Tomsho, Yi Hu, Haiying Liang, Pamela S. Soltis, Douglas E. Soltis, Sandra W. Clifton, Scott E. Schlarbaum, Stephan C. Schuster, Hong Ma, Jim Leebens-Mack, Claude W. Depamphilis

Research output: Contribution to journalArticlepeer-review

1677 Scopus citations

Abstract

Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications-one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms.

Original languageEnglish (US)
Pages (from-to)97-100
Number of pages4
JournalNature
Volume473
Issue number7345
DOIs
StatePublished - May 5 2011

Funding

Acknowledgements This work was supported primarily by NSF Plant Genome Research Program (DEB 0638595, The Ancestral Angiosperm Genome Project) and in part by the Department of Biology and by the Huck Institutes of Life Sciences of the Pennsylvania State University. H.M. was also supported by funds from Fudan University. We thank J. Carlson, M. Frohlich, S. DiLoretto, L. Warg, S. Crutchfield, C. Johnson, N. Naznin, X. Zhou, J. Duarte, B. J. Bliss, J. Der and E. Wafula for help and discussion, D. Stevenson and C. Schultz for Zamia samples, J. McNeal, S. Kim and M. Axtell for photographs, and all the members of The Genome Center at Washington University production team, especially L. Fulton, K. Delehaunty and C. Fronick.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Ancestral polyploidy in seed plants and angiosperms'. Together they form a unique fingerprint.

Cite this