Anisotropy in the wetting of rough surfaces

Yong Chen, Bo He, Junghoon Lee, Neelesh A Patankar

Research output: Contribution to journalArticlepeer-review

177 Scopus citations

Abstract

Surface roughness amplifies the water-repellency of hydrophobic materials. If the roughness geometry is, on average, isotropic then the shape of a sessile drop is almost spherical and the apparent contact angle of the drop on the rough surface is nearly uniform along the contact line. If the roughness geometry is not isotropic, e.g., parallel grooves, then the apparent contact angle is no longer uniform along the contact line. The apparent contact angles observed perpendicular and parallel to the direction of the grooves are different. A better understanding of this problem is critical in designing rough superhydrophobic surfaces. The primary objective of this work is to determine the mechanism of anisotropic wetting and to propose a methodology to quantify the apparent contact angles and the drop shape. We report a theoretical and an experimental study of wetting of surfaces with parallel groove geometry.

Original languageEnglish (US)
Pages (from-to)458-464
Number of pages7
JournalJournal of Colloid And Interface Science
Volume281
Issue number2
DOIs
StatePublished - Jan 15 2005

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Anisotropy in the wetting of rough surfaces'. Together they form a unique fingerprint.

Cite this