TY - JOUR
T1 - Ankle-Brachial Index and Energy Production in People Without Peripheral Artery Disease
T2 - The BLSA
AU - Oberdier, Matt T.
AU - Alghatrif, Majd
AU - Adelnia, Fatemeh
AU - Zampino, Marta
AU - Morrell, Christopher H.
AU - Simonsick, Eleanor
AU - Fishbein, Kenneth
AU - Lakatta, Edward G.
AU - McDermott, Mary M.
AU - Ferrucci, Luigi
N1 - Publisher Copyright:
© 2022 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
PY - 2022/3/15
Y1 - 2022/3/15
N2 - BACKGROUND: Lower ankle-brachial index (ABI) values within the 0.90 to 1.40 range are associated with poorer mitochondrial oxidative capacity of thigh muscles in cross-sectional analyses. Whether ABI decline is associated with greater declines in thigh muscle oxidative capacity with aging is unknown. METHOD AND RESULTS: We analyzed data from 228 participants (100 men) of the BLSA (Baltimore Longitudinal Study of Aging), aged 39 to 97 years, with an ABI between 0.9 and 1.40 at baseline and at follow-up (mean follow-up period of 2.8 years). We examined mitochondrial oxidative capacity of the left thigh muscle, by measuring the postexercise phosphocreatine recovery rate constant (kPCr) from phosphorus-31 magnetic resonance spectroscopy. Greater kPCr indicated higher mitochondrial oxidative capacity. Although kPCr was available on the left leg only, ABI was measured in both legs. Longitudinal rates of change (Change) of left and right ABI and kPCr of the left thigh muscle were estimated using linear mixed effects models, and their association was analyzed by standardized multiple linear regressions. In multivariate analysis including sex, age, baseline kPCr, both left and right baseline ABI, and ABI change in both legs, (kPCr)Change was directly associated with ipsilateral (left) (ABI)Change (standardized [STD]-β=0.14; P=0.0168) but not with contralateral (right) (ABI)Change (P=0.22). Adjusting for traditional cardiovascular risk factors, this association remained significant (STD-β=0.18; P=0.0051). (kPCr)Change was steeper in White race participants (STD-β=0.16; P=0.0122) and body mass index (STD-β=0.13; P=0.0479). There was no significant association with current smoking status (P=0.63), fasting glucose (P=0.28), heart rate (P=0.67), mean blood pressure (P=0.78), and low-density lipoprotein (P=0.75), high-density lipoprotein (P=0.82), or triglycerides (P=0.15). CONCLUSIONS: In people without peripheral arterial disease, greater decline in ABI over time, but not baseline ABI, was associated with faster decline in thigh mitochondrial oxidative capacity in the ipsilateral leg. Further studies are needed to examine whether early interventions that improve lower extremity muscle perfusion can improve and prevent the decline of muscle energetics.
AB - BACKGROUND: Lower ankle-brachial index (ABI) values within the 0.90 to 1.40 range are associated with poorer mitochondrial oxidative capacity of thigh muscles in cross-sectional analyses. Whether ABI decline is associated with greater declines in thigh muscle oxidative capacity with aging is unknown. METHOD AND RESULTS: We analyzed data from 228 participants (100 men) of the BLSA (Baltimore Longitudinal Study of Aging), aged 39 to 97 years, with an ABI between 0.9 and 1.40 at baseline and at follow-up (mean follow-up period of 2.8 years). We examined mitochondrial oxidative capacity of the left thigh muscle, by measuring the postexercise phosphocreatine recovery rate constant (kPCr) from phosphorus-31 magnetic resonance spectroscopy. Greater kPCr indicated higher mitochondrial oxidative capacity. Although kPCr was available on the left leg only, ABI was measured in both legs. Longitudinal rates of change (Change) of left and right ABI and kPCr of the left thigh muscle were estimated using linear mixed effects models, and their association was analyzed by standardized multiple linear regressions. In multivariate analysis including sex, age, baseline kPCr, both left and right baseline ABI, and ABI change in both legs, (kPCr)Change was directly associated with ipsilateral (left) (ABI)Change (standardized [STD]-β=0.14; P=0.0168) but not with contralateral (right) (ABI)Change (P=0.22). Adjusting for traditional cardiovascular risk factors, this association remained significant (STD-β=0.18; P=0.0051). (kPCr)Change was steeper in White race participants (STD-β=0.16; P=0.0122) and body mass index (STD-β=0.13; P=0.0479). There was no significant association with current smoking status (P=0.63), fasting glucose (P=0.28), heart rate (P=0.67), mean blood pressure (P=0.78), and low-density lipoprotein (P=0.75), high-density lipoprotein (P=0.82), or triglycerides (P=0.15). CONCLUSIONS: In people without peripheral arterial disease, greater decline in ABI over time, but not baseline ABI, was associated with faster decline in thigh mitochondrial oxidative capacity in the ipsilateral leg. Further studies are needed to examine whether early interventions that improve lower extremity muscle perfusion can improve and prevent the decline of muscle energetics.
KW - Aging
KW - Epidemiology
KW - Peripheral vascular disease
KW - Primary prevention
UR - http://www.scopus.com/inward/record.url?scp=85126830469&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126830469&partnerID=8YFLogxK
U2 - 10.1161/JAHA.120.019014
DO - 10.1161/JAHA.120.019014
M3 - Article
C2 - 35253449
AN - SCOPUS:85126830469
SN - 2047-9980
VL - 11
JO - Journal of the American Heart Association
JF - Journal of the American Heart Association
IS - 6
M1 - e019014
ER -