AntMan: Interactive Zero-Knowledge Proofs with Sublinear Communication

Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, Xiao Wang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

Recent works on interactive zero-knowledge (ZK) protocols provide a new paradigm with high efficiency and scalability. However, these protocols suffer from high communication overhead, often linear to the circuit size. In this paper, we proposed two new ZK protocols with communication sublinear to the circuit size, while maintaining a similar level of computational efficiency. (1) We designed a ZK protocol that can prove B executions of any circuit C in communication O(B + |C|) field elements (with free addition gates), while the best prior work requires a communication of O(B|C|) field elements. Our protocol is enabled by a new tool called as information-theoretic polynomial authentication code, which may be of independent interest. (2) We developed an optimized implementation of this protocol which shows high practicality. For example, with B=2048, |C|=221, and under 50 Mbps bandwidth and 16 threads, QuickSilver, a state-of-the-art ZK protocol based on vector oblivious linear evaluation (VOLE), can only prove 0.71 million MULT gates per second (mgps) and send one field element per gate; our protocol can prove 15.74 mgps (22x improvement) and send 0.0061 field elements per gate (164x improvement) under the same hardware configuration. (3) Extending the above idea, we constructed a ZK protocol that can prove a single execution of any circuit C in communication O(|C|3/4). This is the first ZK protocol with sublinear communication for an arbitrary circuit in the VOLE-based ZK family.

Original languageEnglish (US)
Title of host publicationCCS 2022 - Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
PublisherAssociation for Computing Machinery
Pages2901-2914
Number of pages14
ISBN (Electronic)9781450394505
DOIs
StatePublished - Nov 7 2022
Event28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022 - Los Angeles, United States
Duration: Nov 7 2022Nov 11 2022

Publication series

NameProceedings of the ACM Conference on Computer and Communications Security
ISSN (Print)1543-7221

Conference

Conference28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022
Country/TerritoryUnited States
CityLos Angeles
Period11/7/2211/11/22

Funding

Work of Kang Yang is supported by the National Natural Science Foundation of China (Grant Nos. 62102037, 61932019, 62022018). Work of Xiao Wang is supported in part by DARPA under Contract No. HR001120C0087, NSF award #2016240, and research awards from Meta and Google. The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

ASJC Scopus subject areas

  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'AntMan: Interactive Zero-Knowledge Proofs with Sublinear Communication'. Together they form a unique fingerprint.

Cite this