TY - JOUR
T1 - AOAH remodels arachidonic acid-containing phospholipid pools in a model of interstitial cystitis pain
T2 - A MAPP Network study
AU - Yang, Wenbin
AU - Yaggie, Ryan E.
AU - Schaeffer, Anthony J.
AU - Klumpp, David J.
N1 - Publisher Copyright:
Copyright: © 2020 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/9
Y1 - 2020/9
N2 - Interstitial cystitis/bladder pain syndrome (IC) is a debilitating condition of chronic pelvic pain with unknown etiology. Recently, we used a genetic approach in a murine model of IC to identify the lipase acyloxyacyl hydrolase (AOAH) as a modulator of pelvic pain. We found that AOAH-deficient mice have elevated pelvic pain responses, and AOAH immunoreactivity was detected along the bladder-brain axis. Lipidomic analyses identified arachidonic acid (AA) and its metabolite PGE2 as significantly elevated in the sacral spinal cord of AOAH-deficient mice, suggesting AA is a substrate for AOAH. Here, we quantified the effects of AOAH on phospholipids containing AA. Spinal cord lipidomics revealed increased AA-containing phosphatidylcholine in AOAH-deficient mice and concomitantly decreased AA-phosphatidylethanolamine, consistent with decreased CoA-independent transferase activity (CoIT). Overexpression of AOAH in cell cultures similarly altered distribution of AA in phospholipid pools, promoted AA incorporation, and resulted in decreased membrane fluidity. Finally, administration of a PGE2 receptor antagonist reduced pelvic pain in AOAH-deficient mice. Together, these findings suggest that AOAH represents a potential CoA-independent AA transferase that modulates CNS pain pathways at the level of phospholipid metabolism.
AB - Interstitial cystitis/bladder pain syndrome (IC) is a debilitating condition of chronic pelvic pain with unknown etiology. Recently, we used a genetic approach in a murine model of IC to identify the lipase acyloxyacyl hydrolase (AOAH) as a modulator of pelvic pain. We found that AOAH-deficient mice have elevated pelvic pain responses, and AOAH immunoreactivity was detected along the bladder-brain axis. Lipidomic analyses identified arachidonic acid (AA) and its metabolite PGE2 as significantly elevated in the sacral spinal cord of AOAH-deficient mice, suggesting AA is a substrate for AOAH. Here, we quantified the effects of AOAH on phospholipids containing AA. Spinal cord lipidomics revealed increased AA-containing phosphatidylcholine in AOAH-deficient mice and concomitantly decreased AA-phosphatidylethanolamine, consistent with decreased CoA-independent transferase activity (CoIT). Overexpression of AOAH in cell cultures similarly altered distribution of AA in phospholipid pools, promoted AA incorporation, and resulted in decreased membrane fluidity. Finally, administration of a PGE2 receptor antagonist reduced pelvic pain in AOAH-deficient mice. Together, these findings suggest that AOAH represents a potential CoA-independent AA transferase that modulates CNS pain pathways at the level of phospholipid metabolism.
UR - http://www.scopus.com/inward/record.url?scp=85091051416&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091051416&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0235384
DO - 10.1371/journal.pone.0235384
M3 - Article
C2 - 32925915
AN - SCOPUS:85091051416
SN - 1932-6203
VL - 15
JO - PloS one
JF - PloS one
IS - 9 September
M1 - e0235384
ER -