TY - JOUR
T1 - Application of computer generation of reaction mechanisms using quantitative rate information to hydrocarbon pyrolysis
AU - De Witt, Matthew J.
AU - Dooling, David J.
AU - Broadbelt, Linda J.
PY - 1999
Y1 - 1999
N2 - Novel modifications were made to the core components of the algorithms for rate-based generation of reaction mechanisms 1, including introducing thermodynamic constraints into the estimation of the controlling rate parameters and an alternative approach for determining the species included in the final mechanism. Once implemented, the adapted rate-based building criterion was successfully employed to construct a compact mechanistic model for low-pressure tetradecane pyrolysis. Though thousands of species and reactions were generated, only a small portion of these were deemed necessary and incorporated into the final model. Experimental data were used to determine frequency factors for a subset of the reaction families, while all other kinetic parameters were set based on the literature. The final optimized values for the frequency factors were consistent with literature, and the model was able to accurately fit experimental data from different reaction conditions. With no adjustment to the optimized frequency factors, the mechanistic model for tetradecane pyrolysis was able to accurately predict reactant conversions and product yields for varying reaction conditions. Both relative trends and the actual values were predicted correctly over a wide range of reactant conversions and initial reactant loadings.
AB - Novel modifications were made to the core components of the algorithms for rate-based generation of reaction mechanisms 1, including introducing thermodynamic constraints into the estimation of the controlling rate parameters and an alternative approach for determining the species included in the final mechanism. Once implemented, the adapted rate-based building criterion was successfully employed to construct a compact mechanistic model for low-pressure tetradecane pyrolysis. Though thousands of species and reactions were generated, only a small portion of these were deemed necessary and incorporated into the final model. Experimental data were used to determine frequency factors for a subset of the reaction families, while all other kinetic parameters were set based on the literature. The final optimized values for the frequency factors were consistent with literature, and the model was able to accurately fit experimental data from different reaction conditions. With no adjustment to the optimized frequency factors, the mechanistic model for tetradecane pyrolysis was able to accurately predict reactant conversions and product yields for varying reaction conditions. Both relative trends and the actual values were predicted correctly over a wide range of reactant conversions and initial reactant loadings.
UR - http://www.scopus.com/inward/record.url?scp=0040964770&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0040964770&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0040964770
SN - 0569-3772
VL - 44
SP - 476
EP - 477
JO - ACS Division of Fuel Chemistry, Preprints
JF - ACS Division of Fuel Chemistry, Preprints
IS - 3
ER -