Applying insights from the pharma innovation model to battery commercialization—pros, cons, and pitfalls

Eve D. Hanson, Samir Mayekar, Vinayak P. Dravid*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

5 Scopus citations

Abstract

Lessons from the pharmaceutical industry’s commercialization successes can be identified and applied to the U.S. battery industry to potentially improve its discouragingly low startup success rates. A carbon-neutral and sustainable society of the future necessitates the widespread use of battery technologies that are efficient, effective, and economical. Lower-cost and more energy-dense battery technology can help solve many of our energy challenges, such as balancing the intermittency problems of renewables and making possible electric transportation fleets. New advanced materials are crucial to such battery advances. However, bringing advanced energy materials to market in the United States remains a formidable challenge. Hurdles include high upfront capital requirements, long timelines to success, and few opportunities for technology risk-reduction. Such challenges impede startups from developing financially viable technologies. Consequently, recent advances in battery performance have come from incremental changes implemented by large companies. By contrast, the pharmaceutical industry has many similar technical challenges, yet has an established pipeline of U.S. startup successes. We review and compare the current market structures of battery and pharma innovation. We propose an updated model of U.S. battery commercialization, informed by the pharma model’s successes. The new approach’s benefits and potential pitfalls are discussed. We provide recommendations for entrepreneurs, investors, manufacturers, and policy makers to improve the battery innovation ecosystem. We hope that these ideas spur the battery community to more successfully commercialize and deploy transformative technologies.

Original languageEnglish (US)
Article number10
JournalMRS Energy and Sustainability
Volume4
Issue number1
DOIs
StatePublished - Dec 2017

Funding

This material is partially based upon work supported by the National Science Foundation under Grant No. DMR-1507810, and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0014520. Research also supported as part of the Center for Electrochemical Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award # DEAC02-06CH11357 (for paper conception). The authors thank Max Hardage for his U.S. battery startup analysis and Dean de la Pefia for copy editing. The authors would like to thank many professionals who gave keen insight into their industries. The recommendations provided, and any mistakes within the manuscript, are wholly the authors’. The authors thank (in alphabetical order) Faruk Abdullah, Keith Crandell, Brendan Florez, Jim Greenberger, Supratik Guha, Benjamin Hernandez, David Klein, Matthew Nordan, Leslie Pinnell, Andreas Roelofs, Amar Shah, Deepa Sheth, and Donna Williamson, among others. The government should build additional support for early stage startup technical development due to the dearth of private investment. This could take place as financial support, perhaps via larger SBIR budgets with larger grants. It also could take the form of in-kind services, such as accelerator programs within national labs, to provide lab space, expertise and instruments to allow new companies to build their technical know-how. The DOE is currently piloting several programs of this kind, including Cyclotron Road and Chain Reaction Innovation. We encourage these efforts.

Keywords

  • economics
  • energy storage
  • sustainability

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Applying insights from the pharma innovation model to battery commercialization—pros, cons, and pitfalls'. Together they form a unique fingerprint.

Cite this