Approximation algorithms for graph augmentation

Samir Khuller, Ramakrishna Thurimella

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

The problem of increasing both edge and vertex connectivity of a graph at an optimal cost is studied. Since the general problem is NP-hard, we focus on efficient approximation schemes that come within a constant factor from the optima]. Previous algorithms either do not take edge costs into consideration, or they run slower than our algorithm. Our algorithm takes as input an undirected graph G0 = (V, E0) on n vertices, that is not necessarily connected, and a set Feasible of m weighted edges on V, and outputs a subset Aug of edges which when added to G0 make it two-connected. The weight of Aug, when G0 is initially connected, is no more than twice the weight of the least weight subset of edges of Feasible that increases the connectivity to two. The running time of our algorithm is O(m + n log n). As a consequence of our results, we can find an approximation to the least-weight two-connected spanning subgraph of a two-connected weighted graph.

Original languageEnglish (US)
Pages (from-to)214-225
Number of pages12
JournalJournal of Algorithms
Volume14
Issue number2
DOIs
StatePublished - Mar 1993

ASJC Scopus subject areas

  • Control and Optimization
  • Computational Mathematics
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'Approximation algorithms for graph augmentation'. Together they form a unique fingerprint.

Cite this