TY - JOUR
T1 - Arithmetic groups have rational representation growth
AU - Avni, Nir
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2011/9
Y1 - 2011/9
N2 - Let Γ be an arithmetic lattice in a semisimple algebraic group over a number field. We show that if Γ has the congruence subgroup property, then the number of n-dimensional irreducible representations of Γ grows like nα, where α is a rational number.
AB - Let Γ be an arithmetic lattice in a semisimple algebraic group over a number field. We show that if Γ has the congruence subgroup property, then the number of n-dimensional irreducible representations of Γ grows like nα, where α is a rational number.
UR - http://www.scopus.com/inward/record.url?scp=80051778800&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051778800&partnerID=8YFLogxK
U2 - 10.4007/annals.2011.174.2.6
DO - 10.4007/annals.2011.174.2.6
M3 - Article
AN - SCOPUS:80051778800
SN - 0003-486X
VL - 174
SP - 1009
EP - 1056
JO - Annals of Mathematics
JF - Annals of Mathematics
IS - 2
ER -