Aspects of weight-support mechanisms in rehabilitation robotics

Arno H.A. Stienen, Edsko E.G. Hekman, Herman Van Der Kooij, Michael D. Ellis, Jules P.A. Dewald

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Weight support can facilitate upper-limb movements, with which the patients may do more and more meaningful exercises earlier in the rehabilitation process. Most rehabilitation devices support the arm against gravity in one way or the other. Weight support can be realized by limiting vertical displacement or applying constant supportive forces which counteract the gravitational pull. Of these, using constant supportive forces is the most natural way to facilitate natural arm movements as it allows full freedom of movement and the amount of weight support is scalable to the patients needs. To apply the supporting forces to the arm, endpoint mechanisms and exoskeletons are more complex to build and use then cable suspensions, but offer more control over the movements. Finally, passive weight support is inherently safe, but active systems have enhanced control options and the capability to create training conditions beyond limb weight.

Original languageEnglish (US)
Title of host publicationWorld Congress on Medical Physics and Biomedical Engineering
Subtitle of host publicationNeuroengineering, Neural Systems, Rehabilitation and Prosthetics
PublisherSpringer Verlag
Pages392-394
Number of pages3
Edition9
ISBN (Print)9783642038884
DOIs
StatePublished - 2009
EventWorld Congress on Medical Physics and Biomedical Engineering: Neuroengineering, Neural Systems, Rehabilitation and Prosthetics - Munich, Germany
Duration: Sep 7 2009Sep 12 2009

Publication series

NameIFMBE Proceedings
Number9
Volume25
ISSN (Print)1680-0737

Other

OtherWorld Congress on Medical Physics and Biomedical Engineering: Neuroengineering, Neural Systems, Rehabilitation and Prosthetics
CountryGermany
CityMunich
Period9/7/099/12/09

ASJC Scopus subject areas

  • Bioengineering
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Aspects of weight-support mechanisms in rehabilitation robotics'. Together they form a unique fingerprint.

Cite this