Assessment of Allergic and Anaphylactic Reactions to mRNA COVID-19 Vaccines with Confirmatory Testing in a US Regional Health System

Christopher Michael Warren, Theo Thomas Snow, Alexandra S. Lee, Mihir Mukesh Shah, Anja Heider, Andra Blomkalns, Brooke Betts, Anthony S. Buzzanco, Joseph Gonzalez, R. Sharon Chinthrajah, Evan Do, Iris Chang, Diane Dunham, Grace Lee, Ruth O'Hara, Helen Park, Mohamed H. Shamji, Lisa Schilling, Sayantani B. Sindher, Deepak SisodiyaEric Smith, Mindy Tsai, Stephen J. Galli, Cezmi Akdis, Kari C. Nadeau*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Importance: As of May 2021, more than 32 million cases of COVID-19 have been confirmed in the United States, resulting in more than 615000 deaths. Anaphylactic reactions associated with the Food and Drug Administration (FDA)-authorized mRNA COVID-19 vaccines have been reported. Objective: To characterize the immunologic mechanisms underlying allergic reactions to these vaccines. Design, Setting, and Participants: This case series included 22 patients with suspected allergic reactions to mRNA COVID-19 vaccines between December 18, 2020, and January 27, 2021, at a large regional health care network. Participants were individuals who received at least 1 of the following International Statistical Classification of Diseases and Related Health Problems, Tenth Revision anaphylaxis codes: T78.2XXA, T80.52XA, T78.2XXD, or E949.9, with documentation of COVID-19 vaccination. Suspected allergy cases were identified and invited for follow-up allergy testing. Exposures: FDA-authorized mRNA COVID-19 vaccines. Main Outcomes and Measures: Allergic reactions were graded using standard definitions, including Brighton criteria. Skin prick testing was conducted to polyethylene glycol (PEG) and polysorbate 80 (P80). Histamine (1 mg/mL) and filtered saline (negative control) were used for internal validation. Basophil activation testing after stimulation for 30 minutes at 37 °C was also conducted. Concentrations of immunoglobulin (Ig) G and IgE antibodies to PEG were obtained to determine possible mechanisms. Results: Of 22 patients (20 [91%] women; mean [SD] age, 40.9 [10.3] years; 15 [68%] with clinical allergy history), 17 (77%) met Brighton anaphylaxis criteria. All reactions fully resolved. Of patients who underwent skin prick tests, 0 of 11 tested positive to PEG, 0 of 11 tested positive to P80, and 1 of 10 (10%) tested positive to the same brand of mRNA vaccine used to vaccinate that individual. Among these same participants, 10 of 11 (91%) had positive basophil activation test results to PEG and 11 of 11 (100%) had positive basophil activation test results to their administered mRNA vaccine. No PEG IgE was detected; instead, PEG IgG was found in tested individuals who had an allergy to the vaccine. Conclusions and Relevance: Based on this case series, women and those with a history of allergic reactions appear at have an elevated risk of mRNA vaccine allergy. Immunological testing suggests non-IgE-mediated immune responses to PEG may be responsible in most individuals.

Original languageEnglish (US)
Article numbere2125524
JournalJAMA network open
Volume4
Issue number9
DOIs
StatePublished - Sep 17 2021

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Assessment of Allergic and Anaphylactic Reactions to mRNA COVID-19 Vaccines with Confirmatory Testing in a US Regional Health System'. Together they form a unique fingerprint.

Cite this