TY - JOUR
T1 - Association of cord blood methylation with neonatal leptin
T2 - An epigenome wide association study
AU - Kadakia, Rachel
AU - Zheng, Yinan
AU - Zhang, Zhou
AU - Zhang, Wei
AU - Josefson, Jami L.
AU - Hou, Lifang
N1 - Publisher Copyright:
© 2019 Kadakia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Background Neonatal adiposity is a risk factor for childhood obesity. Investigating contributors to neonatal adiposity is important for understanding early life obesity risk. Epigenetic changes of metabolic genes in cord blood may contribute to excessive neonatal adiposity and subsequent childhood obesity. This study aims to evaluate the association of cord blood DNA methylation patterns with anthropometric measures and cord blood leptin, a biomarker of neonatal adiposity. Methods A cross-sectional study was performed on a multiethnic cohort of 114 full term neonates born to mothers without gestational diabetes at a university hospital. Cord blood was assayed for leptin and for epigenome-wide DNA methylation profiles via the Illumina 450K platform. Neonatal body composition was measured by air displacement plethysmography. Multivariable linear regression was used to analyze associations between individual CpG sites as well as differentially methylated regions in cord blood DNA with measures of newborn adiposity including anthropometrics (birth weight, fat mass and percent body fat) and cord blood leptin. False discovery rate was estimated to account for multiple comparisons. Results 247 CpG sites as well as 18 differentially methylated gene regions were associated with cord blood leptin but no epigenetic changes were associated with birth weight, fat mass or percent body fat. Genes of interest identified in this study are DNAJA4, TFR2, SMAD3, PLAG1, FGF1, and HNF4A. Conclusion Epigenetic changes in cord blood DNA are associated with cord blood leptin levels, a measure of neonatal adiposity.
AB - Background Neonatal adiposity is a risk factor for childhood obesity. Investigating contributors to neonatal adiposity is important for understanding early life obesity risk. Epigenetic changes of metabolic genes in cord blood may contribute to excessive neonatal adiposity and subsequent childhood obesity. This study aims to evaluate the association of cord blood DNA methylation patterns with anthropometric measures and cord blood leptin, a biomarker of neonatal adiposity. Methods A cross-sectional study was performed on a multiethnic cohort of 114 full term neonates born to mothers without gestational diabetes at a university hospital. Cord blood was assayed for leptin and for epigenome-wide DNA methylation profiles via the Illumina 450K platform. Neonatal body composition was measured by air displacement plethysmography. Multivariable linear regression was used to analyze associations between individual CpG sites as well as differentially methylated regions in cord blood DNA with measures of newborn adiposity including anthropometrics (birth weight, fat mass and percent body fat) and cord blood leptin. False discovery rate was estimated to account for multiple comparisons. Results 247 CpG sites as well as 18 differentially methylated gene regions were associated with cord blood leptin but no epigenetic changes were associated with birth weight, fat mass or percent body fat. Genes of interest identified in this study are DNAJA4, TFR2, SMAD3, PLAG1, FGF1, and HNF4A. Conclusion Epigenetic changes in cord blood DNA are associated with cord blood leptin levels, a measure of neonatal adiposity.
UR - http://www.scopus.com/inward/record.url?scp=85076715667&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076715667&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0226555
DO - 10.1371/journal.pone.0226555
M3 - Article
C2 - 31851703
AN - SCOPUS:85076715667
SN - 1932-6203
VL - 14
JO - PloS one
JF - PloS one
IS - 12
M1 - e0226555
ER -