Asymmetric concentration dependence of segregation fluxes in granular flows

Ryan P. Jones, Austin B. Isner, Hongyi Xiao, Julio M. Ottino, Paul B. Umbanhowar, Richard M. Lueptow*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

We characterize the local concentration dependence of segregation velocity and segregation flux in both size and density bidisperse gravity-driven free-surface granular flows as a function of the particle size ratio and density ratio, respectively, using discrete element method simulations. For a range of particle size ratios and inlet volume flow rates in size-bidisperse flows, the maximum segregation flux occurs at a small particle concentration less than 0.5, which decreases with increasing particle size ratio. The segregation flux increases up to a size ratio of 2.4 but plateaus from there to a size ratio of 3. In density bidisperse flows, the segregation flux is greatest at a heavy particle concentration less than 0.5, which decreases with increasing particle density ratio. The segregation flux increases with increasing density ratio for the extent of density ratios studied, up to 10. We further demonstrate that the simulation results for size-driven segregation are in accord with the predictions of the kinetic sieving segregation model of Savage and Lun [J. Fluid Mech. 189, 311 (1988)JFLSA70022-112010.1017/S002211208800103X].

Original languageEnglish (US)
Article number094304
JournalPhysical Review Fluids
Volume3
Issue number9
DOIs
StatePublished - Sep 2018

ASJC Scopus subject areas

  • Computational Mechanics
  • Modeling and Simulation
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Asymmetric concentration dependence of segregation fluxes in granular flows'. Together they form a unique fingerprint.

Cite this