Atomistic Simulations of Double-Walled Carbon Nanotubes (DWCNTs) as Rotational Bearings

Sulin Zhang, Wing Kim Liu, Rodney S. Ruoff*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

129 Scopus citations


Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings were performed. Molecular mechanics (MM) calculations show that the interlayer energy surface of the bearings is nearly flat. Thermal effects on the bearings were studied with molecular dynamics (MD) simulations at finite temperature. These simulations show that the interlayer corrugation against rotation, and hence the interlayer friction coefficient, is extremely small, suggesting the possible application of DWCNTs as wearless bearings. Extreme operational conditions of the bearings for which the bearings disintegrate are also reported.

Original languageEnglish (US)
Pages (from-to)293-297
Number of pages5
JournalNano letters
Issue number2
StatePublished - Feb 2004

ASJC Scopus subject areas

  • General Chemistry
  • Condensed Matter Physics
  • Mechanical Engineering
  • Bioengineering
  • General Materials Science


Dive into the research topics of 'Atomistic Simulations of Double-Walled Carbon Nanotubes (DWCNTs) as Rotational Bearings'. Together they form a unique fingerprint.

Cite this