TY - JOUR
T1 - Atrioventricular conduction with and without AV nodal delay
T2 - Two pathways to the bundle of His in the rabbit heart
AU - Hucker, William J.
AU - Sharma, Vinod
AU - Nikolski, Vladimir P.
AU - Efimov, Igor R.
PY - 2007/8
Y1 - 2007/8
N2 - The electrophysiological properties of atrioventricular (AV) nodal dual pathways have traditionally been investigated with premature stimuli delivered with right atrial pacing. However, little is known about the functional characteristics of AV nodal inputs outside of this context. Superfused rabbit triangle of Koch preparations (n = 8) and Langendorff-perfused hearts (n = 10) were paced throughout the triangle of Koch and mapped electrically and optically for activation pattern, electrogram and optical action potential morphologies, stimulation thresholds, and stimulus-His (S-H) intervals. Optical mapping and changes in His electrogram morphology were used to confirm the activation pathway. Pacing stimuli ≥2 mm above the tricuspid valve caused fast-pathway activation of the AV node and His with a threshold of 2.4 ± 1.6 mA. An area directly below the coronary sinus had high thresholds (8.6 ± 1.4 mA) that also resulted in fast-pathway excitation (P < 0.001). S-H intervals (81 ± 19 ms) for fast-pathway activation remained constant throughout the triangle of Koch, reflecting the AV delay. Stimuli applied <2 mm from the tricuspid valve resulted in slow pathway (SP) excitation or direct His excitation (4.4 ± 2.2 mA threshold; P < 0.001 compared with fast pathway). For SP/His pacing, S-H intervals showed a strong dependence on the distance from the His electrode and were significantly lower than S-H intervals for fast-pathway activation. SP/His pacing also displayed characteristic changes in His electrogram morphology. In conclusion, optical maps and S-H intervals for SP/His activation suggest that AV conduction via SP bypasses the compact AV node via the lower nodal bundle, which may be utilized to achieve long-term ventricular synchronization.
AB - The electrophysiological properties of atrioventricular (AV) nodal dual pathways have traditionally been investigated with premature stimuli delivered with right atrial pacing. However, little is known about the functional characteristics of AV nodal inputs outside of this context. Superfused rabbit triangle of Koch preparations (n = 8) and Langendorff-perfused hearts (n = 10) were paced throughout the triangle of Koch and mapped electrically and optically for activation pattern, electrogram and optical action potential morphologies, stimulation thresholds, and stimulus-His (S-H) intervals. Optical mapping and changes in His electrogram morphology were used to confirm the activation pathway. Pacing stimuli ≥2 mm above the tricuspid valve caused fast-pathway activation of the AV node and His with a threshold of 2.4 ± 1.6 mA. An area directly below the coronary sinus had high thresholds (8.6 ± 1.4 mA) that also resulted in fast-pathway excitation (P < 0.001). S-H intervals (81 ± 19 ms) for fast-pathway activation remained constant throughout the triangle of Koch, reflecting the AV delay. Stimuli applied <2 mm from the tricuspid valve resulted in slow pathway (SP) excitation or direct His excitation (4.4 ± 2.2 mA threshold; P < 0.001 compared with fast pathway). For SP/His pacing, S-H intervals showed a strong dependence on the distance from the His electrode and were significantly lower than S-H intervals for fast-pathway activation. SP/His pacing also displayed characteristic changes in His electrogram morphology. In conclusion, optical maps and S-H intervals for SP/His activation suggest that AV conduction via SP bypasses the compact AV node via the lower nodal bundle, which may be utilized to achieve long-term ventricular synchronization.
KW - Atrioventricular node
KW - Dual-pathway electrophysiology
KW - Optical mapping
KW - Resynchronization therapy
KW - Slow pathway
UR - http://www.scopus.com/inward/record.url?scp=34547866500&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547866500&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00115.2007
DO - 10.1152/ajpheart.00115.2007
M3 - Article
C2 - 17496219
AN - SCOPUS:34547866500
SN - 0363-6135
VL - 293
SP - H1122-H1130
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 2
ER -