Atrophy and microglial distribution in primary progressive aphasia with transactive response DNA-binding protein-43 kDa

Garam Kim, Kabriya Bolbolan, Tamar Devora Gefen, Sandra Weintraub, Eileen H Bigio, Emily Rogalski, Marek-Marsel Mesulam, Changiz Geula*

*Corresponding author for this work

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Objective: To quantitatively determine the density and distribution of activated microglia across cortical regions and hemispheres in the brains of primary progressive aphasia (PPA) participants with pathological diagnoses of frontotemporal lobar degeneration with transactive response DNA-binding protein-43 (TDP-43) inclusions and to examine the relationships between microglial densities, patterns of focal atrophy, (TDP-43) inclusions, and clinical phenotype. Methods: Activated microglia and TDP-43 inclusions were visualized in whole-hemisphere brain sections using immunohistochemical methods from five participants with PPA-TDP. Unbiased stereology was used to bilaterally quantify human leuckocyte antigen/D related–positive activated microglia and TDP-43 inclusions across five language-related regions. Density and distribution of both markers were compared across cortical regions and hemispheres, and their relationships to patterns of focal atrophy and clinical phenotype were determined. Results: Activated microglia displayed asymmetric distribution favoring the language-dominant hemisphere, consistent with greater postmortem and/or in vivo atrophy in that hemisphere, in PPA-TDP. In one participant with no asymmetric atrophy, quantitative distribution of microglia also lacked asymmetry. Patterns of microglial activation also showed variation that favored areas of high atrophy in regions affiliated with language function, demonstrating concordance between patterns of microglial activation, atrophy, and clinical phenotype. TDP-43 also showed higher inclusion densities in areas of high atrophy than in regions with low atrophy, but no clear relationship with microglia density at a regional level. Interpretation: The initial activation of microglia is most likely a response to cortical abnormalities in PPA-TDP, which contribute to atrophy. The patterns of microglial activation, TDP-43 inclusion deposition, atrophy, and clinical phenotype suggest that activated microglia may make unique contributions to cortical thinning and TDP-43 inclusion formation. Ann Neurol 2018;83:1096–1104.

Original languageEnglish (US)
Pages (from-to)1096-1104
Number of pages9
JournalAnnals of neurology
Volume83
Issue number6
DOIs
StatePublished - Jun 1 2018

Fingerprint

Primary Progressive Aphasia
DNA-Binding Proteins
Atrophy
Microglia
Phenotype
Language
Frontotemporal Lobar Degeneration
Brain

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology

Cite this

@article{acc4918ca2db454dba9a562fdb8ec62c,
title = "Atrophy and microglial distribution in primary progressive aphasia with transactive response DNA-binding protein-43 kDa",
abstract = "Objective: To quantitatively determine the density and distribution of activated microglia across cortical regions and hemispheres in the brains of primary progressive aphasia (PPA) participants with pathological diagnoses of frontotemporal lobar degeneration with transactive response DNA-binding protein-43 (TDP-43) inclusions and to examine the relationships between microglial densities, patterns of focal atrophy, (TDP-43) inclusions, and clinical phenotype. Methods: Activated microglia and TDP-43 inclusions were visualized in whole-hemisphere brain sections using immunohistochemical methods from five participants with PPA-TDP. Unbiased stereology was used to bilaterally quantify human leuckocyte antigen/D related–positive activated microglia and TDP-43 inclusions across five language-related regions. Density and distribution of both markers were compared across cortical regions and hemispheres, and their relationships to patterns of focal atrophy and clinical phenotype were determined. Results: Activated microglia displayed asymmetric distribution favoring the language-dominant hemisphere, consistent with greater postmortem and/or in vivo atrophy in that hemisphere, in PPA-TDP. In one participant with no asymmetric atrophy, quantitative distribution of microglia also lacked asymmetry. Patterns of microglial activation also showed variation that favored areas of high atrophy in regions affiliated with language function, demonstrating concordance between patterns of microglial activation, atrophy, and clinical phenotype. TDP-43 also showed higher inclusion densities in areas of high atrophy than in regions with low atrophy, but no clear relationship with microglia density at a regional level. Interpretation: The initial activation of microglia is most likely a response to cortical abnormalities in PPA-TDP, which contribute to atrophy. The patterns of microglial activation, TDP-43 inclusion deposition, atrophy, and clinical phenotype suggest that activated microglia may make unique contributions to cortical thinning and TDP-43 inclusion formation. Ann Neurol 2018;83:1096–1104.",
author = "Garam Kim and Kabriya Bolbolan and Gefen, {Tamar Devora} and Sandra Weintraub and Bigio, {Eileen H} and Emily Rogalski and Marek-Marsel Mesulam and Changiz Geula",
year = "2018",
month = "6",
day = "1",
doi = "10.1002/ana.25240",
language = "English (US)",
volume = "83",
pages = "1096--1104",
journal = "Annals of Neurology",
issn = "0364-5134",
publisher = "John Wiley and Sons Inc.",
number = "6",

}

TY - JOUR

T1 - Atrophy and microglial distribution in primary progressive aphasia with transactive response DNA-binding protein-43 kDa

AU - Kim, Garam

AU - Bolbolan, Kabriya

AU - Gefen, Tamar Devora

AU - Weintraub, Sandra

AU - Bigio, Eileen H

AU - Rogalski, Emily

AU - Mesulam, Marek-Marsel

AU - Geula, Changiz

PY - 2018/6/1

Y1 - 2018/6/1

N2 - Objective: To quantitatively determine the density and distribution of activated microglia across cortical regions and hemispheres in the brains of primary progressive aphasia (PPA) participants with pathological diagnoses of frontotemporal lobar degeneration with transactive response DNA-binding protein-43 (TDP-43) inclusions and to examine the relationships between microglial densities, patterns of focal atrophy, (TDP-43) inclusions, and clinical phenotype. Methods: Activated microglia and TDP-43 inclusions were visualized in whole-hemisphere brain sections using immunohistochemical methods from five participants with PPA-TDP. Unbiased stereology was used to bilaterally quantify human leuckocyte antigen/D related–positive activated microglia and TDP-43 inclusions across five language-related regions. Density and distribution of both markers were compared across cortical regions and hemispheres, and their relationships to patterns of focal atrophy and clinical phenotype were determined. Results: Activated microglia displayed asymmetric distribution favoring the language-dominant hemisphere, consistent with greater postmortem and/or in vivo atrophy in that hemisphere, in PPA-TDP. In one participant with no asymmetric atrophy, quantitative distribution of microglia also lacked asymmetry. Patterns of microglial activation also showed variation that favored areas of high atrophy in regions affiliated with language function, demonstrating concordance between patterns of microglial activation, atrophy, and clinical phenotype. TDP-43 also showed higher inclusion densities in areas of high atrophy than in regions with low atrophy, but no clear relationship with microglia density at a regional level. Interpretation: The initial activation of microglia is most likely a response to cortical abnormalities in PPA-TDP, which contribute to atrophy. The patterns of microglial activation, TDP-43 inclusion deposition, atrophy, and clinical phenotype suggest that activated microglia may make unique contributions to cortical thinning and TDP-43 inclusion formation. Ann Neurol 2018;83:1096–1104.

AB - Objective: To quantitatively determine the density and distribution of activated microglia across cortical regions and hemispheres in the brains of primary progressive aphasia (PPA) participants with pathological diagnoses of frontotemporal lobar degeneration with transactive response DNA-binding protein-43 (TDP-43) inclusions and to examine the relationships between microglial densities, patterns of focal atrophy, (TDP-43) inclusions, and clinical phenotype. Methods: Activated microglia and TDP-43 inclusions were visualized in whole-hemisphere brain sections using immunohistochemical methods from five participants with PPA-TDP. Unbiased stereology was used to bilaterally quantify human leuckocyte antigen/D related–positive activated microglia and TDP-43 inclusions across five language-related regions. Density and distribution of both markers were compared across cortical regions and hemispheres, and their relationships to patterns of focal atrophy and clinical phenotype were determined. Results: Activated microglia displayed asymmetric distribution favoring the language-dominant hemisphere, consistent with greater postmortem and/or in vivo atrophy in that hemisphere, in PPA-TDP. In one participant with no asymmetric atrophy, quantitative distribution of microglia also lacked asymmetry. Patterns of microglial activation also showed variation that favored areas of high atrophy in regions affiliated with language function, demonstrating concordance between patterns of microglial activation, atrophy, and clinical phenotype. TDP-43 also showed higher inclusion densities in areas of high atrophy than in regions with low atrophy, but no clear relationship with microglia density at a regional level. Interpretation: The initial activation of microglia is most likely a response to cortical abnormalities in PPA-TDP, which contribute to atrophy. The patterns of microglial activation, TDP-43 inclusion deposition, atrophy, and clinical phenotype suggest that activated microglia may make unique contributions to cortical thinning and TDP-43 inclusion formation. Ann Neurol 2018;83:1096–1104.

UR - http://www.scopus.com/inward/record.url?scp=85047456243&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047456243&partnerID=8YFLogxK

U2 - 10.1002/ana.25240

DO - 10.1002/ana.25240

M3 - Article

C2 - 29665116

AN - SCOPUS:85047456243

VL - 83

SP - 1096

EP - 1104

JO - Annals of Neurology

JF - Annals of Neurology

SN - 0364-5134

IS - 6

ER -