Automated Cell Selection Using Support Vector Machine for Application to Spectral Nanocytology

Qin Miao, Justin Derbas, Aya Eid, Hariharan Subramanian, Vadim Backman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Partial wave spectroscopy (PWS) enables quantification of the statistical properties of cell structures at the nanoscale, which has been used to identify patients harboring premalignant tumors by interrogating easily accessible sites distant from location of the lesion. Due to its high sensitivity, cells that are well preserved need to be selected from the smear images for further analysis. To date, such cell selection has been done manually. This is time-consuming, is labor-intensive, is vulnerable to bias, and has considerable inter- and intraoperator variability. In this study, we developed a classification scheme to identify and remove the corrupted cells or debris that are of no diagnostic value from raw smear images. The slide of smear sample is digitized by acquiring and stitching low-magnification transmission. Objects are then extracted from these images through segmentation algorithms. A training-set is created by manually classifying objects as suitable or unsuitable. A feature-set is created by quantifying a large number of features for each object. The training-set and feature-set are used to train a selection algorithm using Support Vector Machine (SVM) classifiers. We show that the selection algorithm achieves an error rate of 93% with a sensitivity of 95%.

Original languageEnglish (US)
Article number6090912
JournalBioMed Research International
StatePublished - 2016

ASJC Scopus subject areas

  • General Immunology and Microbiology
  • General Biochemistry, Genetics and Molecular Biology


Dive into the research topics of 'Automated Cell Selection Using Support Vector Machine for Application to Spectral Nanocytology'. Together they form a unique fingerprint.

Cite this