Abstract
The Gemini Planet Imager Exoplanet Survey (GPIES) is a multiyear direct imaging survey of 600 stars to discover and characterize young Jovian exoplanets and their environments. We have developed an automated data architecture to process and index all data related to the survey uniformly. An automated and flexible data processing framework, which we term the Data Cruncher, combines multiple data reduction pipelines (DRPs) together to process all spectroscopic, polarimetric, and calibration data taken with GPIES. With no human intervention, fully reduced and calibrated data products are available less than an hour after the data are taken to expedite follow up on potential objects of interest. The Data Cruncher can run on a supercomputer to reprocess all GPIES data in a single day as improvements are made to our DRPs. A backend MySQL database indexes all files, which are synced to the cloud, and a front-end web server allows for easy browsing of all files associated with GPIES. To help observers, quicklook displays show reduced data as they are processed in real time, and chatbots on Slack post observing information as well as reduced data products. Together, the GPIES automated data processing architecture reduces our workload, provides real-Time data reduction, optimizes our observing strategy, and maintains a homogeneously reduced dataset to study planet occurrence and instrument performance.
Original language | English (US) |
---|---|
Article number | 018002 |
Journal | Journal of Astronomical Telescopes, Instruments, and Systems |
Volume | 4 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2018 |
Funding
The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a co-operative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciéncia, Tecnologia e Inovaçāo (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). This work was supported in part by the NASA’s NExSS program, Grant No. NNX15AD95G. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1548562. Support for MMB’s work was provided by NASA through Hubble Fellowship Grant #51378.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under Contract No. NAS5-26555. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We thank the two anonymous referees for their thorough review and suggestions. We thank the NERSC and SDSC staff for their helpful support in providing computational resources and technical help. We also thank Barry Mieny for granting us permission to use the database icon used in Fig. 1. This research made use of astropy, a community-developed core Python package for astronomy.34
Keywords
- Data Cruncher.
- Gemini planet imager
- circumstellar disks
- data processing
- exoplanets
- high contrast imaging
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Control and Systems Engineering
- Instrumentation
- Astronomy and Astrophysics
- Mechanical Engineering
- Space and Planetary Science