TY - JOUR
T1 - Automated extraction of grade, stage, and quality information from transurethral resection of bladder tumor pathology reports using natural language processing
AU - Glaser, Alexander P.
AU - Jordan, Brian J.
AU - Cohen, Jason
AU - Desai, Anuj
AU - Silberman, Philip
AU - Meeks, Joshua J.
N1 - Publisher Copyright:
© 2018 American Society of Clinical Oncology.
PY - 2018
Y1 - 2018
N2 - Purpose Bladder cancer is initially diagnosed and staged with a transurethral resection of bladder tumor (TURBT). Patient survival is dependent on appropriate sampling of layers of the bladder, but pathology reports are dictated as free text, making large-scale data extraction for quality improvement challenging. We sought to automate extraction of stage, grade, and quality information from TURBT pathology reports using natural language processing (NLP). Methods Patients undergoing TURBT were retrospectively identified using the Northwestern Enterprise Data Warehouse. An NLP algorithm was then created to extract information from free-text pathology reports and was iteratively improved using a training set of manually reviewed TURBTs. NLP accuracy was then validated using another set of manually reviewed TURBTs, and reliability was calculated using Cohen's κ. Results Of 3,042 TURBTs identified from 2006 to 2016, 39% were classified as benign, 35% as Ta, 11% as T1, 4% as T2, and 10% as isolated carcinoma in situ. Of 500 randomly selected manually reviewed TURBTs, NLP correctly staged 88% of specimens (κ = 0.82; 95% CI, 0.78 to 0.86). Of 272 manually reviewed T1 tumors, NLP correctly categorized grade in 100% of tumors (κ = 1), correctly categorized if muscularis propria was reported by the pathologist in 98% of tumors (κ = 0.81; 95% CI, 0.62 to 0.99), and correctly categorized if muscularis propria was present or absent in the resection specimen in 82% of tumors (κ = 0.62; 95% CI, 0.55 to 0.73). Discrepancy analysis revealed pathologist notes and deeper resection specimens as frequent reasons for NLP misclassifications. Conclusion We developed an NLP algorithm that demonstrates a high degree of reliability in extracting stage, grade, and presence of muscularis propria from TURBT pathology reports. Future iterations can continue to improve performance, but automated extraction of oncologic information is promising in improving quality and assisting physicians in delivery of care.
AB - Purpose Bladder cancer is initially diagnosed and staged with a transurethral resection of bladder tumor (TURBT). Patient survival is dependent on appropriate sampling of layers of the bladder, but pathology reports are dictated as free text, making large-scale data extraction for quality improvement challenging. We sought to automate extraction of stage, grade, and quality information from TURBT pathology reports using natural language processing (NLP). Methods Patients undergoing TURBT were retrospectively identified using the Northwestern Enterprise Data Warehouse. An NLP algorithm was then created to extract information from free-text pathology reports and was iteratively improved using a training set of manually reviewed TURBTs. NLP accuracy was then validated using another set of manually reviewed TURBTs, and reliability was calculated using Cohen's κ. Results Of 3,042 TURBTs identified from 2006 to 2016, 39% were classified as benign, 35% as Ta, 11% as T1, 4% as T2, and 10% as isolated carcinoma in situ. Of 500 randomly selected manually reviewed TURBTs, NLP correctly staged 88% of specimens (κ = 0.82; 95% CI, 0.78 to 0.86). Of 272 manually reviewed T1 tumors, NLP correctly categorized grade in 100% of tumors (κ = 1), correctly categorized if muscularis propria was reported by the pathologist in 98% of tumors (κ = 0.81; 95% CI, 0.62 to 0.99), and correctly categorized if muscularis propria was present or absent in the resection specimen in 82% of tumors (κ = 0.62; 95% CI, 0.55 to 0.73). Discrepancy analysis revealed pathologist notes and deeper resection specimens as frequent reasons for NLP misclassifications. Conclusion We developed an NLP algorithm that demonstrates a high degree of reliability in extracting stage, grade, and presence of muscularis propria from TURBT pathology reports. Future iterations can continue to improve performance, but automated extraction of oncologic information is promising in improving quality and assisting physicians in delivery of care.
UR - http://www.scopus.com/inward/record.url?scp=85074195222&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074195222&partnerID=8YFLogxK
U2 - 10.1200/CCI.17.00128
DO - 10.1200/CCI.17.00128
M3 - Article
C2 - 30652586
AN - SCOPUS:85074195222
SN - 2473-4276
VL - 2018
SP - 1
EP - 8
JO - JCO clinical cancer informatics
JF - JCO clinical cancer informatics
IS - 2
ER -