Automated trajectory synthesis from animation data using trajectory optimization

Elliot R. Johnson, Todd D. Murphey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Trajectory optimization is a technique for finding dynamically feasible trajectories of a mechanical system that approximate a desired trajectory. These tools provide an excellent abstraction from a system's dynamics, allowing a user to animate a robot without considering dynamic complexities, including coupling, instability, and uncontrollable subspaces. The animator focuses on the more relevant ideas of expression and communication. The trajectory optimization bridges the gap between animator and robot, automatically projecting trajectories into the system's reachable set and determining the necessary inputs to the system. These techniques handle closed kinematic chains, constraints, and unstable systems without modification. We give a detailed overview of the optimization technique and present an example from the autonomous marionette project. A waving motion is animated for a two-dimensional arm and the corresponding dynamically-feasible trajectory is found for an under-actuated marionette arm. The trajectory is tested on robotic marionette platform and correctly approximates the original waving animation. The marionette arm is an excellent test bed because it is under-actuated, highly nonlinear, and highly coupled.

Original languageEnglish (US)
Title of host publication2009 IEEE International Conference on Automation Science and Engineering, CASE 2009
Pages274-279
Number of pages6
DOIs
StatePublished - 2009
Event2009 IEEE International Conference on Automation Science and Engineering, CASE 2009 - Bangalore, India
Duration: Aug 22 2009Aug 25 2009

Publication series

Name2009 IEEE International Conference on Automation Science and Engineering, CASE 2009

Other

Other2009 IEEE International Conference on Automation Science and Engineering, CASE 2009
CountryIndia
CityBangalore
Period8/22/098/25/09

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Software

Fingerprint Dive into the research topics of 'Automated trajectory synthesis from animation data using trajectory optimization'. Together they form a unique fingerprint.

Cite this