Automatically designing CNN architectures for medical image segmentation

Aliasghar Mortazi*, Ulas Bagci

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

63 Scopus citations

Abstract

Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.

Original languageEnglish (US)
Title of host publicationMachine Learning in Medical Imaging - 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018, Proceedings
EditorsMingxia Liu, Heung-Il Suk, Yinghuan Shi
PublisherSpringer Verlag
Pages98-106
Number of pages9
ISBN (Print)9783030009182
DOIs
StatePublished - 2018
Event9th International Workshop on Machine Learning in Medical Imaging, MLMI 2018 held in conjunction with the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: Sep 16 2018Sep 16 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11046 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference9th International Workshop on Machine Learning in Medical Imaging, MLMI 2018 held in conjunction with the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period9/16/189/16/18

Keywords

  • Cardiac MRI segmentation
  • DenseCNN
  • Policy gradient
  • Reinforcement learning

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Automatically designing CNN architectures for medical image segmentation'. Together they form a unique fingerprint.

Cite this