Avoiding Lingering in Learning Active Recognition by Adversarial Disturbance

Lei Fan*, Ying Wu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

This paper considers the active recognition scenario, where the agent is empowered to intelligently acquire observations for better recognition. The agents usually compose two modules, i.e., the policy and the recognizer, to select actions and predict the category. While using ground-truth class labels to supervise the recognizer, the policy is typically updated with rewards determined by the current in-training recognizer, like whether achieving correct predictions. However, this joint learning process could lead to unintended solutions, like a collapsed policy that only visits views that the recognizer is already sufficiently trained to obtain rewards, which harms the generalization ability. We call this phenomenon lingering to depict the agent being reluctant to explore challenging views during training. Existing approaches to tackle the exploration-exploitation trade-off could be ineffective as they usually assume reliable feedback during exploration to update the estimate of rarely-visited states. This assumption is invalid here as the reward from the recognizer could be insufficiently trained.To this end, our approach integrates another adversarial policy to constantly disturb the recognition agent during training, forming a competing game to promote active explorations and avoid lingering. The reinforced adversary, rewarded when the recognition fails, contests the recognition agent by turning the camera to challenging observations. Extensive experiments across two datasets validate the effectiveness of the proposed approach regarding its recognition performances, learning efficiencies, and especially robustness in managing environmental noises.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4601-4610
Number of pages10
ISBN (Electronic)9781665493468
DOIs
StatePublished - 2023
Event23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, United States
Duration: Jan 3 2023Jan 7 2023

Publication series

NameProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023

Conference

Conference23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
Country/TerritoryUnited States
CityWaikoloa
Period1/3/231/7/23

Keywords

  • Algorithms: Vision + language and/or other modalities
  • Robotics

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Avoiding Lingering in Learning Active Recognition by Adversarial Disturbance'. Together they form a unique fingerprint.

Cite this