Abstract
This work presents a soluble oligo(ether)-functionalized propylenedioxythiophene (ProDOT)-based copolymer as a versatile platform for a range of high-performance electrochemical devices, including organic electrochemical transistors (OECTs), electrochromic displays, and energy-storage devices. This polymer exhibits dual electroactivity in both aqueous and organic electrolyte systems, redox stability for thousands of redox cycles, and charge-storage capacity exceeding 80 F g−1. As an electrochrome, this material undergoes full colored-to-colorless optical transitions on rapid time scales (<2 s) and impressive electrochromic contrast (Δ%T > 70%). Incorporation of the polymer into OECTs yields accumulation-mode devices with an ION/OFF current ratio of 105, high transconductance without post-treatments, as well as competitive hole mobility and volumetric capacitance, making it an attractive candidate for biosensing applications. In addition to being the first ProDOT-based OECT active material reported to date, this is also the first reported OECT material synthesized via direct(hetero)arylation polymerization, which is a highly favorable polymerization method when compared to commonly used Stille cross-coupling. This work provides a demonstration of how a single ProDOT-based polymer, prepared using benign polymerization chemistry and functionalized with highly polar side chains, can be used to access a range of highly desirable properties and performance metrics relevant to electrochemical, optical, and bioelectronic applications.
Original language | English (US) |
---|---|
Article number | 1804647 |
Journal | Advanced Materials |
Volume | 30 |
Issue number | 50 |
DOIs | |
State | Published - Dec 13 2018 |
Keywords
- bioelectronics
- charge storage
- dioxythiophenes
- electrochromism
- organic electrochemical transistors
ASJC Scopus subject areas
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering