Basic perceptual changes that alter meaning and neural correlates of recognition memory

Chuanji Gao, Molly S. Hermiller, Joel L. Voss, Chunyan Guo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

It is difficult to pinpoint the border between perceptual and conceptual processing, despite their treatment as distinct entities in many studies of recognition memory. For instance, alteration of simple perceptual characteristics of a stimulus can radically change meaning, such as the color of bread changing from white to green. We sought to better understand the role of perceptual and conceptual processing in memory by identifying the effects of changing a basic perceptual feature (color) on behavioral and neural correlates of memory in circumstances when this change would be expected to either change the meaning of a stimulus or to have no effect on meaning (i.e., to influence conceptual processing or not). Abstract visual shapes (“squiggles”) were colorized during study and presented during test in either the same color or a different color. Those squiggles that subjects found to resemble meaningful objects supported behavioral measures of conceptual priming, whereas meaningless squiggles did not. Further, changing color from study to test had a selective effect on behavioral correlates of priming for meaningful squiggles, indicating that color change altered conceptual processing. During a recognition memory test, color change altered event-related brain potential (ERP) correlates of memory for meaningful squiggles but not for meaningless squiggles. Specifically, color change reduced the amplitude of frontally distributed N400 potentials (FN400), implying that these potentials indicated conceptual processing during recognition memory that was sensitive to color change. In contrast, color change had no effect on FN400 correlates of recognition for meaningless squiggles, which were overall smaller in amplitude than for meaningful squiggles (further indicating that these potentials signal conceptual processing during recognition). Thus, merely changing the color of abstract visual shapes can alter their meaning, changing behavioral and neural correlates of memory. These findings are relevant to understanding similarities and distinctions between perceptual and conceptual processing as well as the functional interpretation of neural correlates of recognition memory.

Original languageEnglish (US)
Article number49
JournalFrontiers in Human Neuroscience
Volume9
Issue numberFEB
DOIs
StatePublished - Feb 11 2015

Keywords

  • Color change
  • Conceptual processing
  • Meaning
  • Perceptual processing
  • Recognition

ASJC Scopus subject areas

  • Neuropsychology and Physiological Psychology
  • Neurology
  • Psychiatry and Mental health
  • Biological Psychiatry
  • Behavioral Neuroscience

Fingerprint

Dive into the research topics of 'Basic perceptual changes that alter meaning and neural correlates of recognition memory'. Together they form a unique fingerprint.

Cite this