Bayesian active remote sensing image classification

Pablo Ruiz, Javier Mateos, Gustavo Camps-Valls, Rafael Molina, Aggelos K Katsaggelos

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


In recent years, kernel methods, in particular support vector machines (SVMs), have been successfully introduced to remote sensing image classification. Their properties make them appropriate for dealing with a high number of image features and a low number of available labeled spectra. The introduction of alternative approaches based on (parametric) Bayesian inference has been quite scarce in the more recent years. Assuming a particular prior data distribution may lead to poor results in remote sensing problems because of the specificities and complexity of the data. In this context, the emerging field of nonparametric Bayesian methods constitutes a proper theoretical framework to tackle the remote sensing image classification problem. This paper exploits the Bayesian modeling and inference paradigm to tackle the problem of kernel-based remote sensing image classification. This Bayesian methodology is appropriate for both finite- and infinite-dimensional feature spaces. The particular problem of active learning is addressed by proposing an incremental/active learning approach based on three different approaches: 1) the maximum differential of entropies; 2) the minimum distance to decision boundary; and 3) the minimum normalized distance. Parameters are estimated by using the evidence Bayesian approach, the kernel trick, and the marginal distribution of the observations instead of the posterior distribution of the adaptive parameters. This approach allows us to deal with infinite-dimensional feature spaces. The proposed approach is tested on the challenging problem of urban monitoring from multispectral and synthetic aperture radar data and in multiclass land cover classification of hyperspectral images, in both purely supervised and active learning settings. Similar results are obtained when compared to SVMs in the supervised mode, with the advantage of providing posterior estimates for classification and automatic parameter learning. Comparison with random sampling as well as standard active learning methods such as margin sampling and entropy-query-by-bagging reveals a systematic overall accuracy gain and faster convergence with the number of queries.

Original languageEnglish (US)
Article number6521357
Pages (from-to)2186-2196
Number of pages11
JournalIEEE Transactions on Geoscience and Remote Sensing
Issue number4
StatePublished - Jan 1 2014


  • Bayesian inference
  • Incremental/active learning
  • Multispectral image segmentation
  • Supervised classification

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'Bayesian active remote sensing image classification'. Together they form a unique fingerprint.

Cite this