Abstract
In this work we address the multispectral image classification problem from a Bayesian perspective. We develop an algorithm which utilizes the logistic regression function as the observation model in a probabilistic framework, Super-Gaussian (SG) priors which promote sparsity on the adaptive coefficients, and Variational inference to obtain estimates of all the model unknowns. The proposed algorithm is validated on both synthetic and real experiments and compared with other state-of-the-art methods, such as Support Vector Machine and Gaussian Processes, demonstrating its improved performance.
Original language | English (US) |
---|---|
Title of host publication | 2016 IEEE International Conference on Image Processing, ICIP 2016 - Proceedings |
Publisher | IEEE Computer Society |
Pages | 1893-1897 |
Number of pages | 5 |
ISBN (Electronic) | 9781467399616 |
DOIs | |
State | Published - Aug 3 2016 |
Event | 23rd IEEE International Conference on Image Processing, ICIP 2016 - Phoenix, United States Duration: Sep 25 2016 → Sep 28 2016 |
Publication series
Name | Proceedings - International Conference on Image Processing, ICIP |
---|---|
Volume | 2016-August |
ISSN (Print) | 1522-4880 |
Other
Other | 23rd IEEE International Conference on Image Processing, ICIP 2016 |
---|---|
Country/Territory | United States |
City | Phoenix |
Period | 9/25/16 → 9/28/16 |
Funding
This work has been supported in part by the Ministerio de Economía y Competitividad under contract TIN2013-43880-R and the Department of Energy grant DE-NA0002520.
Keywords
- Bayes Methods
- Image Classification
- Inference Algorithms
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition
- Signal Processing