Bdnf polymorphism predicts general intelligence after penetrating traumatic brain injury

Elham Rostami, Frank Krueger, Serguei Zoubak, Olga Dal Monte, Vanessa Raymont, Matteo Pardini, Colin A. Hodgkinson, David Goldman, Mårten Risling, Jordan Grafman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10-15 years post-injury, and Phase III (30-35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery.

Original languageEnglish (US)
Article numbere27389
JournalPloS one
Volume6
Issue number11
DOIs
StatePublished - Nov 8 2011

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Bdnf polymorphism predicts general intelligence after penetrating traumatic brain injury'. Together they form a unique fingerprint.

Cite this