Besov Function Approximation and Binary Classification on Low-Dimensional Manifolds Using Convolutional Residual Networks

Hao Liu, Minshuo Chen, Tuo Zhao, Wenjing Liao*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

23 Scopus citations

Abstract

Most of existing statistical theories on deep neural networks have sample complexities cursed by the data dimension and therefore cannot well explain the empirical success of deep learning on high-dimensional data. To bridge this gap, we propose to exploit low-dimensional geometric structures of the real world data sets. We establish theoretical guarantees of convolutional residual networks (ConvResNet) in terms of function approximation and statistical estimation for binary classification. Specifically, given the data lying on a d-dimensional manifold isometrically embedded in RD, we prove that if the network architecture is properly chosen, ConvResNets can (1) approximate Besov functions on manifolds with arbitrary accuracy, and (2) learn a classifier by minimizing the empirical logistic risk, which gives an s excess risk in the order of n-2s+2(s_d), where s is a smoothness parameter. This implies that the sample complexity depends on the intrinsic dimension d, instead of the data dimension D. Our results demonstrate that ConvResNets are adaptive to low-dimensional structures of data sets.

Original languageEnglish (US)
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages6770-6780
Number of pages11
ISBN (Electronic)9781713845065
StatePublished - 2021
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: Jul 18 2021Jul 24 2021

Publication series

NameProceedings of Machine Learning Research
Volume139
ISSN (Electronic)2640-3498

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period7/18/217/24/21

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Besov Function Approximation and Binary Classification on Low-Dimensional Manifolds Using Convolutional Residual Networks'. Together they form a unique fingerprint.

Cite this