Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices /639/301/1005/1009 /639/766/1130/2799 /128 /145 /144 /142/126 /120 article

Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Sourav Adhikary, Manijeh Razeghi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


Type-II superlattices (T2SLs) are a class of artificial semiconductors that have demonstrated themselves as a viable candidate to compete with the state-of-The-Art mercury-cadmium-Telluride material system in the field of infrared detection and imaging. Within type-II superlattices, InAs/InAs1-xSbx T2SLs have been shown to have a significantly longer minority carrier lifetime. However, demonstration of high-performance dual-band photodetectors based on InAs/InAs1-xSbx T2SLs in the long and very long wavelength infrared (LWIR & VLWIR) regimes remains challenging. We report the demonstration of high-performance bias-selectable dual-band long-wavelength infrared photodetectors based on new InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattice design. Our design uses two different bandgap absorption regions separated by an electron barrier that blocks the transport of majority carriers to reduce the dark current density of the device. As the applied bias is varied, the device exhibits well-defined cut-off wavelengths of either 8.7 or 12.5 μm at 77 K. This bias-selectable dual-band photodetector is compact, with no moving parts, and will open new opportunities for multi-spectral LWIR and VLWIR imaging and detection.

Original languageEnglish (US)
Article number3379
JournalScientific reports
Issue number1
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs<sub>1-x</sub>Sb<sub>x</sub>/AlAs<sub>1-x</sub>Sb<sub>x</sub> type-II superlattices /639/301/1005/1009 /639/766/1130/2799 /128 /145 /144 /142/126 /120 article'. Together they form a unique fingerprint.

Cite this