Abstract
Graphene oxide (GO) sheets have been used to construct various bulk forms of GO and graphene-based materials through solution-based processing techniques. Here, we report a highly cohesive dough state of GO with tens of weight percent loading in water without binder-like additives. The dough state can be diluted to obtain gels or dispersions, and dried to yield hard solids. It can be kneaded without leaving stains, readily reshaped, connected, and further processed to make bulk GO and graphene materials of arbitrary form factors and tunable microstructures. The doughs can be transformed to dense glassy solids of GO or graphene without long-range stacking order of the sheets, which exhibit isotropic and much enhanced mechanical properties due to hindered sliding between the sheets. GO dough is also found to be a good support material for electrocatalysts as it helps to form compliant interface to access the active particles.
Original language | English (US) |
---|---|
Article number | 422 |
Journal | Nature communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2019 |
Funding
The work was mainly supported by the Office of Naval Research (ONR N000141612838). A.T.O.L. thanks the National Science Foundation for a Graduate Research Fellowship. C.-N.Y. acknowledges 3M for a graduate fellowship, International Institute for Nanotechnology at Northwestern University for a Ryan Fellowship, and Robert R. McCormick School of Engineering and Applied Science at Northwestern University for a Terminal Year Fellowship. R.-H.J. and C.-H.C. thank the National Sun Yat-sen University to support their research visit at Northwestern, and the support from the Ministry of Science and Technology, Taiwan (107–2113-M-110-003 and 107-2918-I-110-004). This work made use of the EPIC facility and the SPID facility of Northwestern University’s NUANCE Center, the Jerome B. Cohen X-Ray Diffraction Facility, and the MatCI Facility supported by the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205) and the MRSEC program (NSF DMR-1720139) at Northwestern University. We also thank G. J. Snyder’s group for use of their hot press, and Prof. SonBinh T. Nguyen, Dr. Jun Gao, Luke Prestowitz for helpful discussions.
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry, Genetics and Molecular Biology
- General Physics and Astronomy