Bio-inspired functional surface fabricated by electrically assisted micro-embossing of AZ31 magnesium alloy

Xinwei Wang, Jie Xu, Chunju Wang*, Antonio J. Sánchez Egea, Jianwei Li, Chen Liu, Zhenlong Wang, Tiejun Zhang, Bin Guo, Jian Cao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Developing bio-inspired functional surfaces on engineering metals is of extreme importance, involving different industrial sectors, like automotive or aeronautics. In particular, micro-embossing is one of the efficient and large-scale processes for manufacturing bio-inspired textures on metallic surfaces. However, this process faces some problems, such as filling defects and die breakage due to size effect, which restrict this technology for some components. Electrically assisted micro-forming has demonstrated the ability of reducing size effects, improving formability and decreasing flow stress, making it a promising hybrid process to control the filling quality of micro-scale features. This research focuses on the use of different current densities to perform embossed micro-channels of 7 μm and sharklet patterns of 10 μm in textured bulk metallic glass dies. These dies are prepared by thermoplastic forming based on the compression of photolithographic silicon molds. The results show that large areas of bio-inspired textures could be fabricated on magnesium alloy when current densities higher than 6 A/mm2 (threshold) are used. The optimal surface quality scenario is obtained for a current density of 13 A/mm2. Additionally, filling depth and depth-width ratio nonlinearly increases when higher current densities are used, where the temperature is a key parameter to control, keeping it below the temperature of the glass transition to avoid melting or an early breakage of the die.

Original languageEnglish (US)
Article number412
JournalMaterials
Volume13
Issue number2
DOIs
StatePublished - Jan 1 2020

Keywords

  • Bio-inspired functional surface
  • Bulk metallic glass
  • Electrically assisted
  • Micro-embossing
  • Photolithography

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Bio-inspired functional surface fabricated by electrically assisted micro-embossing of AZ31 magnesium alloy'. Together they form a unique fingerprint.

Cite this