TY - JOUR
T1 - Biochemical analysis of cultured chorionic villi for the prenatal diagnosis of peroxisomal disorders
T2 - Biochemical thresholds and molecular sensitivity for maternal cell contamination detection
AU - Steinberg, S.
AU - Katsanis, Sara
AU - Moser, A.
AU - Cutting, G.
PY - 2005/1
Y1 - 2005/1
N2 - Objectives: The prenatal diagnosis of peroxisomal disorders is most often performed by biochemical analysis of cultured chorionic villus sample (CVS) or amniocytes. We aimed to (a) highlight the risk of maternal cell contamination (MCC) in biochemical prenatal diagnosis, (b) establish the threshold of these biochemical assays to MCC, and (c) document the sensitivity of PCR based genotyping of microsatellites for the detection of MCC in prenatal diagnosis of inborn errors by biochemical analysis. Methods: The threshold of each biochemical assay was assessed by co-cultivating fibroblasts from known affected and normal individuals. Genotypes for three polymorphic loci were determined by PCR and GeneScan analysis. The sensitivity of the molecular test was determined by DNA mixing experiments and isolation of DNA from co-cultivated fibroblasts. Results: MCC was detected in 2.5% of at risk CVS cultures (n = 79). Co-cultivation of defective and normal fibroblasts demonstrated that the peroxisomal biochemical assays were accurate at 25% contamination. Very low level DNA or cell contamination (1-5%) was detectable by genotyping, but an allele did not yield a definitive peak based on morphology until ∼10% contamination. Furthermore, we demonstrated that other inborn errors of metabolism might be more susceptible to diagnostic error by low level MCC. Conclusion: The sensitivity of the microsatellite analysis (≥10%) is well within the threshold of peroxisomal biochemical assays. Although peroxisomal biochemical assays would not be predicted to introduce a false positive or negative result if MCC <10% were present but not recognised by molecular analysis, the same may not be true for other inborn errors of metabolism.
AB - Objectives: The prenatal diagnosis of peroxisomal disorders is most often performed by biochemical analysis of cultured chorionic villus sample (CVS) or amniocytes. We aimed to (a) highlight the risk of maternal cell contamination (MCC) in biochemical prenatal diagnosis, (b) establish the threshold of these biochemical assays to MCC, and (c) document the sensitivity of PCR based genotyping of microsatellites for the detection of MCC in prenatal diagnosis of inborn errors by biochemical analysis. Methods: The threshold of each biochemical assay was assessed by co-cultivating fibroblasts from known affected and normal individuals. Genotypes for three polymorphic loci were determined by PCR and GeneScan analysis. The sensitivity of the molecular test was determined by DNA mixing experiments and isolation of DNA from co-cultivated fibroblasts. Results: MCC was detected in 2.5% of at risk CVS cultures (n = 79). Co-cultivation of defective and normal fibroblasts demonstrated that the peroxisomal biochemical assays were accurate at 25% contamination. Very low level DNA or cell contamination (1-5%) was detectable by genotyping, but an allele did not yield a definitive peak based on morphology until ∼10% contamination. Furthermore, we demonstrated that other inborn errors of metabolism might be more susceptible to diagnostic error by low level MCC. Conclusion: The sensitivity of the microsatellite analysis (≥10%) is well within the threshold of peroxisomal biochemical assays. Although peroxisomal biochemical assays would not be predicted to introduce a false positive or negative result if MCC <10% were present but not recognised by molecular analysis, the same may not be true for other inborn errors of metabolism.
UR - http://www.scopus.com/inward/record.url?scp=13244291692&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=13244291692&partnerID=8YFLogxK
U2 - 10.1136/jmg.2004.023556
DO - 10.1136/jmg.2004.023556
M3 - Article
C2 - 15635073
AN - SCOPUS:13244291692
SN - 0022-2593
VL - 42
SP - 38
EP - 44
JO - Journal of medical genetics
JF - Journal of medical genetics
IS - 1
ER -