Abstract
Proteinaceous fibrillar inclusions are key pathological hallmarks of multiple neurodegenerative diseases. In the early stages of Alzheimer's disease (AD), amyloid-beta peptides form protofibrils in the extracellular space, which act as seeds that gradually grow and mature into large amyloid plaques. Despite this basic understanding, current knowledge of the amyloid fibril structure, composition, and deposition patterns in the brain is limited. One major barrier has been the inability to isolate highly purified amyloid fibrils from brain extracts. Affinity purification and laser capture microdissection-based approaches have been previously used to isolate amyloids but are limited by the small quantity of material that can be recovered. This novel, robust protocol describes the biochemical purification of amyloid plaque cores using sodium dodecyl sulfate (SDS) solubilization with sucrose density gradient ultracentrifugation and ultrasonication and yields highly pure fibrils from AD patients and AD model brain tissues. Mass spectrometry (MS)-based bottom-up proteomic analysis of the purified material represents a robust strategy to identify nearly all the primary protein components of amyloid fibrils. Previous proteomic studies of proteins in the amyloid coronae have revealed an unexpectedly large and functionally diverse collection of proteins. Notably, after refining the purification strategy, the number of co-purifying proteins was reduced by more than 10-fold, indicating the high purity of the isolated SDS insoluble material. Negative staining and immuno-gold electron microscopy allowed confirmation of the purity of these preparations. Further studies are required to understand the spatial and biological attributes that contribute to the deposition of these proteins into amyloid inclusions. Taken together, this analytical strategy is well-positioned to increase the understanding of amyloid biology.
Original language | English (US) |
---|---|
Article number | e63816 |
Journal | Journal of Visualized Experiments |
Volume | 2022 |
Issue number | 182 |
DOIs | |
State | Published - 2022 |
Funding
This work was supported by the NIH grant R01AG061865 to R.J.V. and J.N.S. The authors thank Vassar and Savas research group members at Northwestern University for their thoughtful discussions. We also sincerely thank Dr(s). Ansgar Seimer and Ralf Langen at the University of South California for their crucial input. We thank Dr. Farida Korabova for sample preparation and negative staining electron microscopy imaging at Northwestern University Center for Advanced Microscopy.
ASJC Scopus subject areas
- General Chemical Engineering
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Neuroscience