Abstract
Background: Tremor is the most common movement disorder and strongly increases in incidence and prevalence with aging. Although not life threatening, upper-limb tremors hamper the independence of 65% of people suffering from them affected persons, greatly impacting their quality of life. Current treatments include pharmacotherapy and surgery (thalamotomy and deep brain stimulation). However, these options are not sufficient for approximately 25% of patients. Therefore, further research and new therapeutic options are required to effectively manage pathological tremor. Methods: This paper presents findings of two research projects in which two different wearable robots for tremor management were developed based on force loading and validated. The first consisted of a robotic exoskeleton that applied forces to tremulous limbs and consistently attenuated mild and severe tremors. The second was a neuroprosthesis based on transcutaneous neurostimulation. A total of 22 patients suffering from parkinsonian or essential tremor (ET) of different severities were recruited for experimental validation, and both systems were evaluated using standard tasks employed for neurological examination. The inclusion criterion was a postural and/or kinetic pathological upper-limb tremor resistant to medication. Results: The results demonstrate that both approaches effectively suppressed tremor in most patients, although further research is required. The work presented here is based on clinical evidence from a small number of patients (n510 for robotic exoskeleton and n512 for the neuroprosthesis), but most had a positive response to the approaches. In summary, biomechanical loading is non-invasive and painless. It may be effective in patients who are insufficiently responsive (or have adverse reactions) to drugs or in whom surgery is contraindicated. Discussion: This paper identifies and evaluates biomechanical loading approaches to tremor management and discusses their potential.
Original language | English (US) |
---|---|
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Tremor and other hyperkinetic movements (New York, N.Y.) |
Volume | 2 |
DOIs | |
State | Published - 2012 |
Funding
* To whom correspondence should be addressed. E-mail: [email protected] Editor: Elan D. Louis, Columbia University, United States of America Received: November 9, 2011 Accepted: June 3, 2012 Published: October 10, 2012 Copyright: ’ 2012 Rocon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution–Noncommercial–No Derivatives License, which permits the user to copy, distribute, and transmit the work provided that the original author(s) and source are credited; that no commercial use is made of the work; and that the work is not altered or transformed. Funding: This research was supported by the projects DRIFTS(EU-QKL6-ICT-2002-00536), TREMOR (EU-ICT-2007-224051), NeuroTREMOR (EU-ICT-2011.5.1-287739), and the Spanish project REHABOT (DPI2008-06772-C03-01). Financial Disclosures: None. Conflict of Interest: The authors report no conflict of interest.
Keywords
- Biomechanical loading
- Treatment
- Tremor
ASJC Scopus subject areas
- Cardiology and Cardiovascular Medicine