Black holes in young stellar clusters

Sanghamitra Goswami, Paul Kiel, Frederic A. Rasio

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


We present theoretical models for stellar black hole (BH) properties in young, massive star clusters. Using a Monte Carlo code for stellar dynamics, we model realistic star clusters with N ≃ 5 × 105 stars and significant binary fractions (up to 50%) with self-consistent treatments of stellar dynamics and stellar evolution. We compute the formation rates and characteristic properties of single and binary BHs for various representative ages, cluster parameters, and metallicities. Because of dynamical interactions and supernova (SN) kicks, more single BHs end up retained in clusters compared to BHs in binaries. We also find that the ejection of BHs from a cluster is a strong function of initial density. In low-density clusters (where dynamical effects are negligible), it is mainly SN kicks that eject BHs from the cluster, whereas in high-density clusters (initial central density ρc(0) 105 M· pc-3 in our models) the BH ejection rate is enhanced significantly by dynamics. Dynamical interactions of binary systems in dense clusters also modify the orbital period and eccentricity distributions while increasing the probability of a BH having a more massive companion.

Original languageEnglish (US)
Article number81
JournalAstrophysical Journal
Issue number2
StatePublished - Feb 1 2014


  • galaxies: star clusters: general
  • galaxies: starburst
  • methods: numerical
  • stars: kinematics and dynamics

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Black holes in young stellar clusters'. Together they form a unique fingerprint.

Cite this