Blazed grating enables highly decoupled optically variable devices fabricated by vibration-assisted diamond texturing

Jianjian Wang, Yaoke Wang, Jianfu Zhang, Volker Schulze, Ping Guo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Optically variable devices (OVDs) are well received for anti-counterfeiting and decorative applications. In this study, new strategies to develop highly decoupled OVDs were proposed and demonstrated based on the fast patterning of blazed gratings by vibration-assisted diamond texturing. A unique surface generation mechanism was revealed as a combined cutting and forming process. One facet of blazed grating is generated by the cutting motion defined by the tool tip trajectory. The other facet is formed by the tool flank face, which establishes the blaze angle. This process is able to generate high-resolution, structurally colored graphics by modulating cutting velocity to control the grating distribution. Due to the unique surface generation mechanism, the orientation of the created blazed gratings is intrinsically perpendicular to the cutting direction. Thus, it enables the flexible control of concentration directions of diffracted light by tuning the orientation of blazed gratings. We designed and demonstrated two types of highly decoupled OVDs based on vibration-induced blazed gratings. The orthogonaltype OVD utilizes the azimuth angle dependence of blazed gratings to encode two images in orthogonal cutting directions. The in-plane-type OVD utilizes the optimized diffraction efficiency of blazed gratings in a given diffraction order to encode two images in opposite cutting directions. The fabricated OVDs are presented and compared with optical simulation results based on an extended scalar diffraction theory.

Original languageEnglish (US)
Pages (from-to)8829-8846
Number of pages18
JournalOptics Express
Volume30
Issue number6
DOIs
StatePublished - Mar 14 2022

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Blazed grating enables highly decoupled optically variable devices fabricated by vibration-assisted diamond texturing'. Together they form a unique fingerprint.

Cite this