Blunted neural response to gains versus losses associated with both risk-prone and risk-averse behavior in a clinically diverse sample

Ashley A. Huggins, Anna Weinberg, Stephanie M. Gorka, Stewart A Shankman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Reduced responsiveness to reward has been associated with both risk-prone and risk-averse behavior, common features of externalizing and internalizing psychopathology, respectively. Thus, evidence has suggested a potential quadratic relationship (i.e., inverted U) between reward sensitivity and risk-taking propensity. Blunted response to reward compared to loss may therefore demonstrate transdiagnostic utility as it relates to different patterns of maladaptive risk behavior. The current study sought to disentangle the relationship between risk and reward in a clinically diverse sample. In a sample of 210 adults (aged 18–30), the RewP (an ERP indexing differentiation between rewards and losses) was measured during a monetary guessing game, and risk-taking propensity was measured with a behavioral task (i.e., BART) that simulates real-world risk taking. Participants also completed clinical assessments to assess for lifetime psychopathology. Results indicated that there was no linear association between the RewP and risk-taking propensity; however, there was a significant quadratic relationship. Thus, a reduced sensitivity to reward receipt was associated with both risk-prone and risk-averse behavior. There was also a significant quadratic relationship between the RewP and money won during the BART, indicating that being too risk prone or risk averse is disadvantageous and leads to missed reward. Overall, these findings suggested that blunted neural differentiation between gains and losses may contribute to deficits in effectively weighing reward and loss and result in maladaptive risk-taking behavior. These findings support continued examination of reward dysfunction dimensionally in order to better characterize behavioral profiles implicated in clinical phenotypes.

Original languageEnglish (US)
Article numbere13342
Issue number6
StatePublished - Jun 2019


  • psychopathology
  • reward positivity
  • risk taking

ASJC Scopus subject areas

  • Experimental and Cognitive Psychology
  • Endocrine and Autonomic Systems
  • Neuropsychology and Physiological Psychology
  • Neurology
  • Biological Psychiatry
  • Cognitive Neuroscience
  • Developmental Neuroscience
  • General Neuroscience


Dive into the research topics of 'Blunted neural response to gains versus losses associated with both risk-prone and risk-averse behavior in a clinically diverse sample'. Together they form a unique fingerprint.

Cite this