Abstract
Background: Chronic lung diseases are marked by progressive inflammation, tissue damage and remodelling. Bone marrow-derived progenitor cells may contribute to these processes. The objectives of this study were to (1) to quantify CD45+Collagen-1+ fibrocytes and a novel epithelial-like population of bone marrow-derived cells, which express Clara Cell Secretory Protein, in patients at the time of lung transplant and (2) to evaluate mediators that may act to recruit these cells during injury.Methods: Using an observational design, progenitor cells were quantified by flow cytometry from both bone marrow (BM) and peripheral blood (PB). Migration was tested using in vitro transwell assays. Multiplex bead-based assays were used to quantify plasma cytokines.Results: An increase in CD45+Collagen-1+ fibrocytes was found in pulmonary fibrosis and bronchiolitis obliterans patients. Cystic fibrosis patients had an increase in CCSP+ cells in both the BM and PB. The proportion of CCSP+ cells in the BM and PB was correlated. CCSP+ cells express the chemokine receptors CCR2, CCR4, CXCR3, and CXCR4, and significantly migrated in vitro toward Stromal Derived Factor-1 (SDF-1) and Stem Cell Growth Factor-β (SCGF-β). Plasma cytokine levels differed between disease groups, with a significant correlation between SCGF-β and CCSP+ cells and between Monocyte Chemotactic Protein-1 and fibrocytes.Conclusions: Different bone marrow-derived cells are found in various lung diseases. Increased fibrocytes were associated with fibrotic lung diseases. An increase in the novel CCSP+ epithelial-like progenitors in cystic fibrosis patients was found. These differences may be mediated by alterations in plasma cytokines responsible for cell recruitment.
Original language | English (US) |
---|---|
Article number | 48 |
Journal | BMC Pulmonary Medicine |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Aug 3 2013 |
Externally published | Yes |
Keywords
- Clara cell
- Fibrocytes
- Lung progenitor
- Migration
ASJC Scopus subject areas
- Pulmonary and Respiratory Medicine