TY - JOUR
T1 - Bone-marrow mesenchymal stem-cell administration significantly improves outcome after retinal ischemia in rats
AU - Mathew, Biji
AU - Poston, Jacqueline N.
AU - Dreixler, John C.
AU - Torres, Leianne
AU - Lopez, Jasmine
AU - Zelkha, Ruth
AU - Balyasnikova, Irina
AU - Lesniak, Maciej S.
AU - Roth, Steven
N1 - Publisher Copyright:
© 2017, Springer-Verlag Berlin Heidelberg.
PY - 2017/8/1
Y1 - 2017/8/1
N2 - Purpose: Ischemia-associated retinal degeneration is one of the leading causes of vision loss, and to date, there are no effective treatment options. We hypothesized that delayed injection of bone-marrow stem cells (BMSCs) 24 h after the onset of ischemia could effectively rescue ischemic retina from its consequences, including apoptosis, inflammation, and increased vascular permeability, thereby preventing retinal cell loss. Methods: Retinal ischemia was induced in adult Wistar rats by increasing intraocular pressure (IOP) to 130–135 mmHg for 55 min. BMSCs harvested from rat femur were injected into the vitreous 24 h post-ischemia. Functional recovery was assessed 7 days later using electroretinography (ERG) measurements of the a-wave, b-wave, P2, scotopic threshold response (STR), and oscillatory potentials (OP). The retinal injury and anti-ischemic effects of BMSCs were quantitated by measuring apoptosis, autophagy, inflammatory markers, and retinal–blood barrier permeability. The distribution and fate of BMSC were qualitatively examined using real-time fundus imaging, and retinal flat mounts. Results: Intravitreal delivery of BMSCs significantly improved recovery of the ERG a- and b-waves, OP, negative STR, and P2, and attenuated apoptosis as evidenced by decreased TUNEL and caspase-3 protein levels. BMSCs significantly increased autophagy, decreased inflammatory mediators (TNF-α, IL-1β, IL-6), and diminished retinal vascular permeability. BMSCs persisted in the vitreous and were also found within ischemic retina. Conclusions: Taken together, our results indicate that intravitreal injection of BMSCs rescued the retina from ischemic damage in a rat model. The mechanisms include suppression of apoptosis, attenuation of inflammation and vascular permeability, and preservation of autophagy.
AB - Purpose: Ischemia-associated retinal degeneration is one of the leading causes of vision loss, and to date, there are no effective treatment options. We hypothesized that delayed injection of bone-marrow stem cells (BMSCs) 24 h after the onset of ischemia could effectively rescue ischemic retina from its consequences, including apoptosis, inflammation, and increased vascular permeability, thereby preventing retinal cell loss. Methods: Retinal ischemia was induced in adult Wistar rats by increasing intraocular pressure (IOP) to 130–135 mmHg for 55 min. BMSCs harvested from rat femur were injected into the vitreous 24 h post-ischemia. Functional recovery was assessed 7 days later using electroretinography (ERG) measurements of the a-wave, b-wave, P2, scotopic threshold response (STR), and oscillatory potentials (OP). The retinal injury and anti-ischemic effects of BMSCs were quantitated by measuring apoptosis, autophagy, inflammatory markers, and retinal–blood barrier permeability. The distribution and fate of BMSC were qualitatively examined using real-time fundus imaging, and retinal flat mounts. Results: Intravitreal delivery of BMSCs significantly improved recovery of the ERG a- and b-waves, OP, negative STR, and P2, and attenuated apoptosis as evidenced by decreased TUNEL and caspase-3 protein levels. BMSCs significantly increased autophagy, decreased inflammatory mediators (TNF-α, IL-1β, IL-6), and diminished retinal vascular permeability. BMSCs persisted in the vitreous and were also found within ischemic retina. Conclusions: Taken together, our results indicate that intravitreal injection of BMSCs rescued the retina from ischemic damage in a rat model. The mechanisms include suppression of apoptosis, attenuation of inflammation and vascular permeability, and preservation of autophagy.
KW - Apoptosis
KW - Autophagy
KW - Bone-marrow mesenchymal stem cells
KW - Electroretinography
KW - Inflammation
KW - Ischemia
KW - Retinal vascular permeability
UR - http://www.scopus.com/inward/record.url?scp=85019573217&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019573217&partnerID=8YFLogxK
U2 - 10.1007/s00417-017-3690-1
DO - 10.1007/s00417-017-3690-1
M3 - Article
C2 - 28523456
AN - SCOPUS:85019573217
SN - 0721-832X
VL - 255
SP - 1581
EP - 1592
JO - Graefe's Archive for Clinical and Experimental Ophthalmology
JF - Graefe's Archive for Clinical and Experimental Ophthalmology
IS - 8
ER -